प्रस्तावक कलन: Difference between revisions
(Created page with "{{Short description|Branch of formal logic}} {{Distinguish|Propositional analysis}} {{Use dmy dates|date=February 2021}} {{Transformation rules}} प्रस्तावप...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Branch of formal logic}} | {{Short description|Branch of formal logic}} | ||
{{Distinguish|Propositional analysis}} | {{Distinguish|Propositional analysis}} | ||
{{Transformation rules}} | {{Transformation rules}} | ||
प्रस्तावपरक कलन [[तर्क]] की एक शाखा है। इसे प्रोपोज़िशनल लॉजिक, स्टेटमेंट लॉजिक, सेंटेंशियल कैलकुलस, सेंटेंशियल लॉजिक या कभी-कभी ज़ीरोथ-ऑर्डर लॉजिक भी कहा जाता है। यह [[प्रस्तावों]] (जो सही या गलत हो सकता है) और प्रस्तावों के बीच संबंधों से संबंधित है, जिसमें उनके आधार पर तर्कों का निर्माण भी शामिल है। यौगिक तर्कवाक्यों का निर्माण तर्कवाक्यों को [[तार्किक संयोजक]]ों द्वारा जोड़कर किया जाता है। वे तर्कवाक्य जिनमें कोई तार्किक संयोजक नहीं होते, परमाण्विक तर्कवाक्य कहलाते हैं। | प्रस्तावपरक कलन [[तर्क]] की एक शाखा है। इसे प्रोपोज़िशनल लॉजिक, स्टेटमेंट लॉजिक, सेंटेंशियल कैलकुलस, सेंटेंशियल लॉजिक या कभी-कभी ज़ीरोथ-ऑर्डर लॉजिक भी कहा जाता है। यह [[प्रस्तावों]] (जो सही या गलत हो सकता है) और प्रस्तावों के बीच संबंधों से संबंधित है, जिसमें उनके आधार पर तर्कों का निर्माण भी शामिल है। यौगिक तर्कवाक्यों का निर्माण तर्कवाक्यों को [[तार्किक संयोजक]]ों द्वारा जोड़कर किया जाता है। वे तर्कवाक्य जिनमें कोई तार्किक संयोजक नहीं होते, परमाण्विक तर्कवाक्य कहलाते हैं। | ||
Line 148: | Line 148: | ||
* सेट <math>\Alpha</math>तार्किक प्रस्तावों का प्रतिनिधित्व करने के लिए काम करने वाले प्रतीकों का अनगिनत अनंत सेट: | * सेट <math>\Alpha</math>तार्किक प्रस्तावों का प्रतिनिधित्व करने के लिए काम करने वाले प्रतीकों का अनगिनत अनंत सेट: | ||
*: <math>\Alpha = \{p, q, r, s, t, u, p_2, \ldots \}.</math> | *: <math>\Alpha = \{p, q, r, s, t, u, p_2, \ldots \}.</math> | ||
* कार्यात्मक रूप से पूरा सेट <math>\Omega</math> तार्किक संचालकों (तार्किक संयोजकता और निषेध) की संख्या इस प्रकार है। संयोजन, वियोग और निहितार्थ के लिए तीन संयोजकों में से (<math>\wedge, \lor</math>, और {{math|→}}), एक को आदिम के रूप में लिया जा सकता है और अन्य दो को इसके और निषेध के रूप में परिभाषित किया जा सकता है ({{math|¬}}).<ref name="Wernick">Wernick, William (1942) "Complete Sets of Logical Functions," ''Transactions of the American Mathematical Society'' '''51''', pp. 117–132.</ref> वैकल्पिक रूप से, सभी तार्किक ऑपरेटरों को एकमात्र पर्याप्त ऑपरेटर के रूप में परिभाषित किया जा सकता है, जैसे [[शेफर लाइन]] (नंद)। द्विसशर्त (<math>a \leftrightarrow b</math>) निश्चित रूप से संयोजन और निहितार्थ के रूप में परिभाषित किया जा सकता है <math>(a \to b) \land (b \to a)</math> | * कार्यात्मक रूप से पूरा सेट <math>\Omega</math> तार्किक संचालकों (तार्किक संयोजकता और निषेध) की संख्या इस प्रकार है। संयोजन, वियोग और निहितार्थ के लिए तीन संयोजकों में से (<math>\wedge, \lor</math>, और {{math|→}}), एक को आदिम के रूप में लिया जा सकता है और अन्य दो को इसके और निषेध के रूप में परिभाषित किया जा सकता है ({{math|¬}}).<ref name="Wernick">Wernick, William (1942) "Complete Sets of Logical Functions," ''Transactions of the American Mathematical Society'' '''51''', pp. 117–132.</ref> वैकल्पिक रूप से, सभी तार्किक ऑपरेटरों को एकमात्र पर्याप्त ऑपरेटर के रूप में परिभाषित किया जा सकता है, जैसे [[शेफर लाइन]] (नंद)। द्विसशर्त (<math>a \leftrightarrow b</math>) निश्चित रूप से संयोजन और निहितार्थ के रूप में परिभाषित किया जा सकता है <math>(a \to b) \land (b \to a)</math>एक प्रस्तावपरक कलन के दो आदिम संचालन के रूप में निषेध और निहितार्थ को अपनाना ओमेगा सेट होने के समान है <math>\Omega = \Omega_1 \cup \Omega_2</math> विभाजन इस प्रकार है: | ||
*: <math>\Omega_1 = \{ \lnot \},</math> | *: <math>\Omega_1 = \{ \lnot \},</math> | ||
*: <math>\Omega_2 = \{ \to \}.</math> | *: <math>\Omega_2 = \{ \to \}.</math> | ||
Line 734: | Line 734: | ||
== ग्राफिकल कैलकुली == | == ग्राफिकल कैलकुली == | ||
गणितीय संरचनाओं के कई अन्य सेटों को शामिल करने के लिए परिमित आधार पर परिमित अनुक्रमों के एक सेट से एक औपचारिक भाषा की परिभाषा को सामान्य बनाना संभव है, जब तक कि वे परिमित सामग्रियों से परिमित साधनों द्वारा निर्मित हों। क्या अधिक है, औपचारिक संरचनाओं के इन परिवारों में से कई तर्क में उपयोग के लिए विशेष रूप से उपयुक्त हैं। | गणितीय संरचनाओं के कई अन्य सेटों को शामिल करने के लिए परिमित आधार पर परिमित अनुक्रमों के एक सेट से एक औपचारिक भाषा की परिभाषा को सामान्य बनाना संभव है, जब तक कि वे परिमित सामग्रियों से परिमित साधनों द्वारा निर्मित हों। क्या अधिक है, औपचारिक संरचनाओं के इन परिवारों में से कई तर्क में उपयोग के लिए विशेष रूप से उपयुक्त हैं। | ||
Line 832: | Line 831: | ||
{{Formal Fallacy}} | {{Formal Fallacy}} | ||
{{Mathematical logic}} | {{Mathematical logic}} | ||
[[Category: प्रपोजल कैलकुलस| प्रपोजल कैलकुलस]] [[Category: औपचारिक तर्क की प्रणाली]] [[Category: तार्किक गणना]] [[Category: बूलियन बीजगणित]] [[Category: शास्त्रीय तर्क]] [[Category: विश्लेषणात्मक दर्शन]] | [[Category: प्रपोजल कैलकुलस| प्रपोजल कैलकुलस]] [[Category: औपचारिक तर्क की प्रणाली]] [[Category: तार्किक गणना]] [[Category: बूलियन बीजगणित]] [[Category: शास्त्रीय तर्क]] [[Category: विश्लेषणात्मक दर्शन]] | ||
Revision as of 20:34, 21 February 2023
प्रस्तावपरक कलन तर्क की एक शाखा है। इसे प्रोपोज़िशनल लॉजिक, स्टेटमेंट लॉजिक, सेंटेंशियल कैलकुलस, सेंटेंशियल लॉजिक या कभी-कभी ज़ीरोथ-ऑर्डर लॉजिक भी कहा जाता है। यह प्रस्तावों (जो सही या गलत हो सकता है) और प्रस्तावों के बीच संबंधों से संबंधित है, जिसमें उनके आधार पर तर्कों का निर्माण भी शामिल है। यौगिक तर्कवाक्यों का निर्माण तर्कवाक्यों को तार्किक संयोजकों द्वारा जोड़कर किया जाता है। वे तर्कवाक्य जिनमें कोई तार्किक संयोजक नहीं होते, परमाण्विक तर्कवाक्य कहलाते हैं।
प्रथम-क्रम तर्क के विपरीत, प्रस्तावपरक तर्क गैर-तार्किक वस्तुओं से निपटता नहीं है, उनके बारे में भविष्यवाणी करता है, या परिमाणक (तर्क)तर्क)। हालाँकि, प्रस्तावपरक तर्क की सभी मशीनरी प्रथम-क्रम तर्क और उच्च-क्रम तर्क में शामिल है। इस अर्थ में, प्रस्तावात्मक तर्क प्रथम-क्रम तर्क और उच्च-क्रम तर्क की नींव है।
स्पष्टीकरण
तार्किक संयोजक प्राकृतिक भाषाओं में पाए जाते हैं। उदाहरण के लिए अंग्रेजी में, कुछ उदाहरण हैं और (तार्किक संयोजन), या (तार्किक संयोजन), नहीं (निषेध) और यदि (लेकिन केवल जब भौतिक सशर्त को निरूपित करने के लिए उपयोग किया जाता है)।
निम्नलिखित प्रस्तावपरक तर्क के दायरे में एक बहुत ही सरल अनुमान का एक उदाहरण है:
- परिसर 1: अगर बारिश हो रही है तो बादल छाए हुए हैं।
- परिसर 2: बारिश हो रही है।
- निष्कर्ष: बादल छाए हुए हैं।
परिसर और निष्कर्ष दोनों प्रस्ताव हैं। परिसर को प्रदान किया जाता है, और मूड सेट करना (एक अनुमान नियम) के आवेदन के साथ, निष्कर्ष निम्नानुसार है।
जैसा कि प्रस्तावात्मक तर्क उस बिंदु से परे प्रस्तावों की संरचना से संबंधित नहीं है जहां उन्हें तार्किक संयोजकों द्वारा और अधिक विघटित नहीं किया जा सकता है, इस अनुमान को उन परमाणु बयानों को बयान पत्रों के साथ बदलकर बहाल किया जा सकता है, जिन्हें बयानों का प्रतिनिधित्व करने वाले चर के रूप में व्याख्या की जाती है:
- परिसर 1:
- परिसर 2:
- निष्कर्ष:
उसी को संक्षेप में निम्न प्रकार से कहा जा सकता है:
कब P यह बारिश हो रही है और के रूप में व्याख्या की है Q जैसा कि यह बादलदार है उपरोक्त प्रतीकात्मक अभिव्यक्तियों को प्राकृतिक भाषा में मूल अभिव्यक्ति के साथ सटीक रूप से मेल खाते देखा जा सकता है। इतना ही नहीं, वे इस रूप के किसी अन्य अनुमान के अनुरूप भी होंगे, जो उसी आधार पर मान्य होगा जिस आधार पर यह अनुमान है।
प्रस्तावात्मक तर्क का अध्ययन एक औपचारिक प्रणाली के माध्यम से किया जा सकता है जिसमें प्रस्तावों का प्रतिनिधित्व करने के लिए एक औपचारिक भाषा का सुव्यवस्थित सूत्र व्याख्या (तर्क) हो सकता है। स्वयंसिद्धों की एक निगमनात्मक प्रणाली और अनुमान का नियम कुछ सूत्रों को व्युत्पन्न करने की अनुमति देता है। इन व्युत्पन्न सूत्रों को प्रमेय कहा जाता है और इन्हें सही तर्कवाक्य के रूप में व्याख्यायित किया जा सकता है। ऐसे सूत्रों के निर्मित अनुक्रम को औपचारिक प्रमाण या प्रमाण के रूप में जाना जाता है और अनुक्रम का अंतिम सूत्र प्रमेय है। व्युत्पत्ति की व्याख्या प्रमेय द्वारा प्रस्तुत प्रस्ताव के प्रमाण के रूप में की जा सकती है।
जब औपचारिक तर्क का प्रतिनिधित्व करने के लिए एक औपचारिक प्रणाली का उपयोग किया जाता है, तो केवल कथन पत्र (आमतौर पर कैपिटल रोमन अक्षर जैसे , और ) सीधे प्रतिनिधित्व कर रहे हैं। जब उनकी व्याख्या की जाती है तो उत्पन्न होने वाली प्राकृतिक भाषा के प्रस्ताव प्रणाली के दायरे से बाहर होते हैं, और औपचारिक प्रणाली और इसकी व्याख्या के बीच का संबंध औपचारिक प्रणाली के बाहर भी होता है।
शास्त्रीय सत्य-कार्यात्मक प्रस्तावपरक तर्क में, सूत्रों की व्याख्या दो संभावित सत्य मूल्यों में से एक के रूप में की जाती है, सत्य का सत्य मान या असत्य का सत्य मान।[1] द्विसंयोजकता के सिद्धांत और अपवर्जित मध्य के नियम को बरकरार रखा गया है। ट्रुथ-फंक्शनल प्रोपोज़िशनल लॉजिक को इस तरह परिभाषित किया गया है और इसके लिए सिस्टम समाकृतिकता को ज़ीरोथ-ऑर्डर लॉजिक माना जाता है। हालाँकि, वैकल्पिक प्रस्तावपरक तर्क भी संभव हैं। अधिक जानकारी के लिए, प्रस्ताविक कलन#वैकल्पिक कलन नीचे देखें।
इतिहास
यद्यपि प्रस्तावपरक तर्क (जो प्रस्तावपरक कलन के साथ विनिमेय है) को पहले के दार्शनिकों द्वारा संकेत दिया गया था, इसे तीसरी शताब्दी ईसा पूर्व में क्रिसिपस द्वारा एक औपचारिक तर्क (स्टोइक तर्क) में विकसित किया गया था।[2] और उनके उत्तराधिकारी स्टोइक्स द्वारा विस्तारित किया गया। तर्क प्रस्तावों पर केंद्रित था। यह उन्नति पारंपरिक न्यायवाक्य से भिन्न थी, जो कि न्यायवाक्य में न्यायवाक्य#शर्तों पर केंद्रित था। हालाँकि, अधिकांश मूल लेखन खो गए थे[3] और स्टोइक्स द्वारा विकसित प्रस्तावपरक तर्क अब पुरातनता में बाद में समझ में नहीं आया।[citation needed] नतीजतन, 12 वीं शताब्दी में पीटर एबेलार्ड द्वारा प्रणाली को अनिवार्य रूप से पुनर्निर्मित किया गया था।[4] सांकेतिक तर्क का उपयोग करते हुए अंतत: प्रस्तावात्मक तर्क को परिष्कृत किया गया। 17वीं/18वीं सदी के गणितज्ञ गॉटफ्रीड लीबनिज को गणना कैलकुलेटर के साथ अपने काम के लिए प्रतीकात्मक तर्क के संस्थापक होने का श्रेय दिया जाता है। हालांकि उनका काम अपनी तरह का पहला था, यह बड़े तार्किक समुदाय के लिए अज्ञात था। नतीजतन, लीबनिज द्वारा हासिल की गई कई प्रगतियों को जॉर्ज बूले और ऑगस्टस डी मॉर्गन जैसे तर्कशास्त्रियों द्वारा फिर से बनाया गया था - लाइबनिज से पूरी तरह से स्वतंत्र।[5] जिस तरह प्रस्तावात्मक तर्क को पहले के न्यायवाक्य तर्क से एक उन्नति माना जा सकता है, गोटलॉब फ्रेज| एक लेखक विधेय तर्क का वर्णन करता है, जो कि न्यायसंगत तर्क और प्रस्तावपरक तर्क की विशिष्ट विशेषताओं के संयोजन के रूप में है।[6] नतीजतन, विधेय तर्क ने तर्क के इतिहास में एक नए युग की शुरुआत की; हालाँकि, प्राकृतिक कटौती, विश्लेषणात्मक झांकी की विधि और सत्य-तालिका सहित, प्रस्तावपरक तर्क में प्रगति अभी भी फ्रीज के बाद की गई थी। प्राकृतिक निगमन का आविष्कार गेरहार्ड जेंटजन और जान लुकासिविक्ज़ ने किया था। ट्रुथ ट्री का आविष्कार एवर्ट विलेम बेथ ने किया था।[7] हालांकि, सत्य तालिकाओं का आविष्कार अनिश्चित आरोपण का है।
अंदर काम करता है फ्रीज द्वारा[8] और बर्ट्रेंड रसेल,[9] सत्य तालिकाओं के आविष्कार के लिए प्रभावशाली विचार हैं। वास्तविक सारणीबद्ध संरचना (एक तालिका के रूप में स्वरूपित किया जा रहा है), आम तौर पर लुडविग विट्गेन्स्टाइन या एमिल पोस्ट (या दोनों, स्वतंत्र रूप से) को श्रेय दिया जाता है।[8]फ्रीज और रसेल के अलावा, अन्य लोगों को सत्य सारणी से पहले के विचार रखने का श्रेय दिया जाता है जिनमें फिलो, बोले, चार्ल्स सैंडर्स पियर्स, शामिल हैं।[10] और अर्नस्ट श्रोडर (गणितज्ञ)|अर्नस्ट श्रोडर। सारणीबद्ध संरचना का श्रेय अन्य लोगों को दिया जाता है, जिनमें जन लुकासिविक्ज़, अल्फ्रेड नॉर्थ व्हाइटहेड, विलियम स्टेनली जेवन्स, जॉन वेन और क्लेरेंस इरविंग लुईस शामिल हैं।[9]अंत में, जॉन शोस्की की तरह कुछ लोगों ने निष्कर्ष निकाला है कि यह स्पष्ट नहीं है कि किसी एक व्यक्ति को सत्य-सारणियों के 'आविष्कारक' की उपाधि दी जानी चाहिए। .[9]
शब्दावली
सामान्य शब्दों में, एक कैलकुलस एक औपचारिक प्रणाली है जिसमें वाक्यात्मक अभिव्यक्तियों (अच्छी तरह से निर्मित सूत्र) का एक सेट होता है, इन अभिव्यक्तियों (स्वयंसिद्धों) का एक विशिष्ट उपसमुच्चय, साथ ही औपचारिक नियमों का एक सेट होता है जो एक विशिष्ट द्विआधारी संबंध को परिभाषित करता है, जिसका उद्देश्य अभिव्यक्ति के स्थान पर तार्किक तुल्यता के रूप में व्याख्या की जाए।
जब औपचारिक प्रणाली एक तार्किक प्रणाली होने का इरादा रखती है, तो अभिव्यक्तियों को बयानों के रूप में व्याख्या करने के लिए होता है, और नियम, जिन्हें अनुमान नियम कहा जाता है, आमतौर पर सत्य-संरक्षण के लिए अभिप्रेत हैं। इस सेटिंग में, नियम, जिसमें अभिगृहीत शामिल हो सकते हैं, का उपयोग सत्य कथनों का प्रतिनिधित्व करने वाले सूत्रों को प्राप्त करने (अनुमान) करने के लिए किया जा सकता है—सत्य कथनों का प्रतिनिधित्व करने वाले दिए गए सूत्रों से।
स्वयंसिद्धों का समुच्चय खाली हो सकता है, एक गैर-खाली परिमित समुच्चय, या एक गणनीय रूप से अनंत समुच्चय (स्वयंसिद्ध स्कीमा देखें)। एक औपचारिक व्याकरण औपचारिक भाषा के भावों और सुगठित सूत्रों को पुनरावर्ती रूप से परिभाषित करता है। इसके अलावा एक शब्दार्थ दिया जा सकता है जो सत्य और मूल्यांकन (तर्क) (या व्याख्या (तर्क)) को परिभाषित करता है।
एक प्रस्तावपरक कलन की औपचारिक भाषा में शामिल हैं
- आदिम प्रतीकों का एक सेट, जिसे विभिन्न रूप से परमाणु सूत्र, प्लेसहोल्डर, प्रस्ताव पत्र या चर के रूप में संदर्भित किया जाता है, और
- ऑपरेटर प्रतीकों का एक सेट, विभिन्न रूप से तार्किक ऑपरेटरों या तार्किक संयोजकों के रूप में व्याख्या की जाती है।
एक सुव्यवस्थित सूत्र कोई परमाणु सूत्र है, या कोई भी सूत्र जो व्याकरण के नियमों के अनुसार ऑपरेटर प्रतीकों के माध्यम से परमाणु सूत्रों से बनाया जा सकता है।
गणितज्ञ कभी-कभी प्रस्तावात्मक स्थिरांक, प्रस्तावात्मक चर और स्कीमाटा के बीच अंतर करते हैं। प्रस्तावनात्मक स्थिरांक कुछ विशेष प्रस्ताव का प्रतिनिधित्व करते हैं, जबकि प्रस्तावनात्मक चर सभी परमाणु प्रस्तावों के सेट पर होते हैं। स्कीमाटा, हालांकि, सभी प्रस्तावों की श्रेणी में है। द्वारा प्रस्तावनीय स्थिरांक का प्रतिनिधित्व करना आम है A, B, और C, प्रस्ताव चर द्वारा P, Q, और R, और योजनाबद्ध अक्षर अक्सर ग्रीक अक्षर होते हैं, सबसे अधिक बार φ, ψ, और χ.
बुनियादी अवधारणाएँ
निम्नलिखित एक मानक प्रस्तावपरक कलन की रूपरेखा देता है। कई अलग-अलग फॉर्मूलेशन मौजूद हैं जो कमोबेश सभी समकक्ष हैं, लेकिन विवरण में भिन्न हैं:
- उनकी भाषा (यानी, आदिम प्रतीकों और ऑपरेटर प्रतीकों का विशेष संग्रह),
- स्वयंसिद्धों का समूह, या विशिष्ट सूत्र, और
- अनुमान नियमों का सेट।
किसी दिए गए तर्कवाक्य को एक अक्षर से प्रदर्शित किया जा सकता है जिसे 'तर्कसंगत स्थिरांक' कहा जाता है, जो गणित में एक अक्षर द्वारा किसी संख्या का प्रतिनिधित्व करने के समान है (उदाहरण के लिए, a = 5). सभी प्रस्तावों को दो सत्य-मूल्यों में से एक की आवश्यकता होती है: सत्य या असत्य। उदाहरण के लिए, चलो P प्रस्ताव हो कि बाहर बारिश हो रही है। यह सच होगा (P) अगर बाहर बारिश हो रही है, और गलत अन्यथा (¬P).
- फिर हम सत्य-कार्यात्मक संचालकों को परिभाषित करते हैं, जो निषेध से शुरू होते हैं। ¬P के निषेध का प्रतिनिधित्व करता है P, जिसे इनकार के रूप में माना जा सकता है P. उपरोक्त उदाहरण में, ¬P व्यक्त करता है कि बाहर बारिश नहीं हो रही है, या अधिक मानक पढ़ने से: ऐसा नहीं है कि बाहर बारिश हो रही है। कब P क्या सच है, ¬P गलत है; और जब P गलत है ¬P क्या सच है। नतीजतन, ¬ ¬P हमेशा एक ही सत्य-मूल्य होता है P.
- संयोजन एक सत्य-कार्यात्मक संयोजक है जो दो सरल तर्कवाक्यों में से एक प्रस्ताव बनाता है, उदाहरण के लिए, P और Q. का योग P और Q लिखा है P ∧ Q, और व्यक्त करता है कि प्रत्येक सत्य है। हम पढ़ते है P ∧ Q जैसाP और Q. किसी भी दो प्रस्तावों के लिए, सत्य मूल्यों के चार संभावित कार्य हैं:
- P सच है और Q क्या सच है
- P सच है और Q गलत है
- P झूठा है और Q क्या सच है
- P झूठा है और Q गलत है
- का योग P और Q 1 के मामले में सत्य है, और अन्यथा गलत है। कहाँ P प्रस्ताव है कि बाहर बारिश हो रही है और Q यह प्रस्ताव है कि कंसास के ऊपर एक शीत-मोर्चा है, P ∧ Q सच है जब बाहर बारिश हो रही है और कंसास के ऊपर एक ठंडा-मोर्चा है। अगर बाहर बारिश नहीं हो रही है, तो P ∧ Q गलत है; और अगर कंसास के ऊपर कोई कोल्ड-फ्रंट नहीं है, तो P ∧ Q भी झूठा है।
- डिसजंक्शन संयुग्मन जैसा दिखता है कि यह दो सरल प्रस्तावों में से एक प्रस्ताव बनाता है। हम इसे लिखते हैं P ∨ Q, और इसे पढ़ा जाता हैP या Q. यह या तो व्यक्त करता है P या Q क्या सच है। इस प्रकार, ऊपर सूचीबद्ध मामलों में, का विच्छेदन P साथ Q सभी मामलों में सत्य है—केस 4 को छोड़कर। ऊपर दिए गए उदाहरण का उपयोग करते हुएअनन्य संयोजन व्यक्त करता है कि या तो बाहर बारिश हो रही है, या कंसास के ऊपर एक ठंडा मोर्चा है। (ध्यान दें, संयोजन का यह प्रयोग अंग्रेजी शब्द या के उपयोग के समान माना जाता है। हालांकि, यह अंग्रेजी समावेशी संयोजन या की तरह है, जिसका उपयोग कम से कम दो प्रस्तावों में से एक की सच्चाई को व्यक्त करने के लिए किया जा सकता है। यह नहीं है जैसे अंग्रेजी समावेशी विच्छेदन या, जो दो प्रस्तावों में से एक की सच्चाई को व्यक्त करता है। दूसरे शब्दों में, एक्सक्लूसिव या गलत है जब दोनों P और Q सत्य हैं (मामला 1), और समान रूप से असत्य है जब दोनों P और Q झूठे हैं (केस 4)। अनन्य या का एक उदाहरण है: आपके पास बैगल या पेस्ट्री हो सकती है, लेकिन दोनों नहीं। प्राय: प्राकृतिक भाषा में, उचित संदर्भ दिए जाने पर, परिशिष्ट लेकिन दोनों को छोड़ा नहीं जाता है - लेकिन निहित है। गणित में, तथापि, या हमेशा समावेशी होता है या; अगर अनन्य या इसका मतलब है तो यह संभवतः xor द्वारा निर्दिष्ट किया जाएगा।)
- भौतिक सशर्त भी दो सरल प्रस्तावों में शामिल होता है, और हम लिखते हैं P → Q, जो अगर पढ़ा जाता है P तब Q. तीर के बाईं ओर के प्रस्ताव को पूर्ववर्ती कहा जाता है, और दाईं ओर के प्रस्ताव को परिणामी कहा जाता है। (संयोजन या संयोजन के लिए ऐसा कोई पदनाम नहीं है, क्योंकि वे क्रमविनिमेय संपत्ति संचालन हैं।) यह व्यक्त करता है Q सच है जब भी P क्या सच है। इस प्रकार P → Q स्थिति 2 को छोड़कर ऊपर दिए गए प्रत्येक मामले में सत्य है, क्योंकि यह एकमात्र मामला है जब P सच है लेकिन Q क्या नहीं है। उदाहरण का उपयोग करते हुए, अगर P तब Q व्यक्त करता है कि अगर बाहर बारिश हो रही है, तो कंसास के ऊपर एक ठंडा-मोर्चा है। भौतिक सशर्त अक्सर भौतिक कार्य-कारण के साथ भ्रमित होता है। हालाँकि, भौतिक सशर्त, केवल दो प्रस्तावों को उनके सत्य-मूल्यों से संबंधित करता है - जो कि कारण और प्रभाव का संबंध नहीं है। यह साहित्य में विवादास्पद है कि भौतिक निहितार्थ तार्किक कारण का प्रतिनिधित्व करता है या नहीं।
- द्विशर्त दो सरल तर्कवाक्यों को जोड़ता है, और हम लिखते हैं P ↔ Q, जिसे पढ़ा जाता हैP अगर और केवल अगर Q. यह व्यक्त करता है P और Q समान सत्य-मूल्य है, और स्थितियों 1 और 4 में।'P सच है अगर और केवल अगर Q' सत्य है, अन्यथा असत्य है।
इन विभिन्न ऑपरेटरों के साथ-साथ विश्लेषणात्मक झांकी की विधि के लिए सत्य तालिकाओं को देखना बहुत मददगार है।
संचालन के तहत बंद
सत्य-कार्यात्मक संयोजकों के अंतर्गत प्रस्तावात्मक तर्क समापन (गणित) है। यानी किसी प्रस्ताव के लिए φ, ¬φ भी एक प्रस्ताव है। इसी तरह, किसी भी प्रस्ताव के लिए φ और ψ, φ ∧ ψ एक प्रस्ताव है, और इसी तरह संयोजन, सशर्त और द्विप्रतिबंध के लिए। इसका तात्पर्य है कि, उदाहरण के लिए, φ ∧ ψ एक प्रस्ताव है, और इसलिए इसे दूसरे प्रस्ताव के साथ जोड़ा जा सकता है। इसका प्रतिनिधित्व करने के लिए, हमें यह इंगित करने के लिए कोष्ठकों का उपयोग करने की आवश्यकता है कि कौन सा प्रस्ताव किसके साथ जुड़ा हुआ है। उदाहरण के लिए, P ∧ Q ∧ R एक सुनिर्मित सूत्र नहीं है, क्योंकि हम नहीं जानते कि क्या हम जुड़ रहे हैं P ∧ Q साथ R या अगर हम जुड़ रहे हैं P साथ Q ∧ R. इस प्रकार हमें या तो लिखना चाहिए (P ∧ Q) ∧ R पूर्व का प्रतिनिधित्व करने के लिए, या P ∧ (Q ∧ R) बाद का प्रतिनिधित्व करने के लिए। सत्य स्थितियों का मूल्यांकन करके, हम देखते हैं कि दोनों अभिव्यक्तियों में समान सत्य स्थितियाँ हैं (समान मामलों में सत्य होंगी), और इसके अलावा मनमाने संयोजनों द्वारा बनाए गए किसी भी प्रस्ताव की समान सत्य स्थितियाँ होंगी, कोष्ठकों के स्थान की परवाह किए बिना। इसका मतलब यह है कि संयुग्मन साहचर्य संपत्ति है, हालांकि, किसी को यह नहीं मान लेना चाहिए कि कोष्ठक कभी भी एक उद्देश्य की पूर्ति नहीं करते हैं। उदाहरण के लिए, वाक्य P ∧ (Q ∨ R) की समान सत्य स्थिति नहीं है (P ∧ Q) ∨ R, इसलिए वे अलग-अलग वाक्य हैं जो केवल कोष्ठकों द्वारा प्रतिष्ठित हैं। उपरोक्त संदर्भित सत्य-तालिका विधि द्वारा इसे सत्यापित किया जा सकता है।
नोट: किसी भी मनमानी संख्या के प्रस्तावक स्थिरांक के लिए, हम मामलों की एक परिमित संख्या बना सकते हैं जो उनके संभावित सत्य-मूल्यों को सूचीबद्ध करते हैं। इसे उत्पन्न करने का एक सरल तरीका सत्य-सारणी है, जिसमें कोई लिखता है P, Q, ..., Z, किसी भी सूची के लिए k प्रस्तावनात्मक स्थिरांक—अर्थात्, प्रस्तावनात्मक स्थिरांक की कोई भी सूची k प्रविष्टियाँ। इस सूची के नीचे एक लिखता है 2k पंक्तियाँ, और नीचे P एक पंक्तियों के पहले आधे भाग को सही (या T) से भरता है और दूसरे आधे हिस्से को गलत (या F) से भरता है। नीचे Q एक टी के साथ एक-चौथाई पंक्तियों में भरता है, फिर एक-चौथाई एफ के साथ, फिर एक-चौथाई टी के साथ और अंतिम तिमाही एफ के साथ। अगला कॉलम पंक्तियों के प्रत्येक आठवें के लिए सही और गलत के बीच वैकल्पिक होता है, फिर सोलहवीं, और इसी तरह, जब तक कि प्रत्येक पंक्ति के लिए T और F के बीच अंतिम प्रस्ताविक स्थिरांक भिन्न न हो जाए। यह उन प्रस्तावित स्थिरांकों के लिए संभावित मामलों या सत्य-मूल्य असाइनमेंट की पूरी सूची देगा।
तर्क
प्रस्तावपरक कलन तब एक तर्क को प्रस्तावों की सूची के रूप में परिभाषित करता है। एक वैध तर्क प्रस्तावों की एक सूची है, जिनमें से अंतिम - बाकी से - या निहित है। अन्य सभी तर्क अमान्य हैं। सरलतम मान्य तर्क है मूड सेट करना, जिसका एक उदाहरण प्रस्तावों की निम्नलिखित सूची है:
यह तीन प्रस्तावों की एक सूची है, प्रत्येक पंक्ति एक प्रस्ताव है, और अंतिम शेष से अनुसरण करता है। पहली दो पंक्तियों को परिसर कहा जाता है, और अंतिम पंक्ति को निष्कर्ष कहा जाता है। हम कहते हैं कि कोई प्रस्ताव C प्रस्तावों के किसी भी सेट से अनुसरण करता है , अगर C जब भी सेट के प्रत्येक सदस्य को सच होना चाहिए क्या सच है। उपरोक्त तर्क में, किसी के लिए P और Q, जब कभी भी P → Q और P सच हैं, अनिवार्य रूप से Q क्या सच है। ध्यान दें कि कब P सच है, हम केस 3 और 4 (सत्य तालिका से) पर विचार नहीं कर सकते हैं। कब P → Q सत्य है, हम स्थिति 2 पर विचार नहीं कर सकते। यह केवल स्थिति 1 को छोड़ता है, जिसमें Q भी सच है। इस प्रकार Q परिसर द्वारा निहित है।
यह योजनाबद्ध रूप से सामान्यीकरण करता है। इस प्रकार, कहाँ φ और ψ कोई भी प्रस्ताव हो सकता है,
तर्क के अन्य रूप सुविधाजनक हैं, लेकिन आवश्यक नहीं हैं। स्वयंसिद्धों के एक पूर्ण सेट को देखते हुए (ऐसे एक सेट के लिए नीचे देखें), प्रस्तावपरक तर्क में अन्य सभी तर्क रूपों को साबित करने के लिए मॉडस पोनेन्स पर्याप्त हैं, इस प्रकार उन्हें एक व्युत्पन्न माना जा सकता है। ध्यान दें, यह पहले क्रम के तर्क जैसे अन्य तर्कों के लिए प्रस्तावात्मक तर्क के विस्तार के बारे में सच नहीं है। पूर्णता (तर्क) प्राप्त करने के लिए पहले क्रम के तर्क को अनुमान के कम से कम एक अतिरिक्त नियम की आवश्यकता होती है।
औपचारिक तर्कशास्त्र में तर्क का महत्व यह है कि व्यक्ति स्थापित सत्यों से नए सत्य प्राप्त कर सकता है। उपरोक्त पहले उदाहरण में, दो परिसरों को देखते हुए, की सच्चाई Q अभी तक ज्ञात या कहा नहीं गया है। तर्क दिए जाने के बाद, Q निकाला जाता है। इस तरह, हम एक कटौती प्रणाली को उन सभी प्रस्तावों के एक सेट के रूप में परिभाषित करते हैं जिन्हें प्रस्तावों के दूसरे सेट से घटाया जा सकता है। उदाहरण के लिए, प्रस्तावों के सेट को देखते हुए , हम कटौती प्रणाली को परिभाषित कर सकते हैं, Γ, जो उन सभी प्रस्तावों का समुच्चय है जिनका पालन किया जाता है A. निगमन प्रमेय#अनुमान के आभासी नियम हमेशा मान लिए जाते हैं, इसलिए . इसके अलावा, के पहले तत्व से A, अंतिम तत्व, साथ ही मोड सेटिंग, R एक परिणाम है, और इसलिए . चूँकि हमने पर्याप्त रूप से पूर्ण स्वयंसिद्धों को शामिल नहीं किया है, हालाँकि, और कुछ भी नहीं निकाला जा सकता है। इस प्रकार, भले ही प्रस्तावात्मक तर्क में अध्ययन की गई अधिकांश निगमन प्रणालियाँ निष्कर्ष निकालने में सक्षम हैं , यह प्रस्ताव इस तरह के प्रस्ताव को साबित करने के लिए बहुत कमजोर है।
एक प्रस्तावक कलन का सामान्य विवरण
एक प्रस्तावपरक कलन एक औपचारिक प्रणाली है , कहाँ:
- The alpha set is a countably infinite set of elements called proposition symbols or propositional variables. Syntactically speaking, these are the most basic elements of the formal language , otherwise referred to as atomic formulas or terminal elements. In the examples to follow, the elements of are typically the letters p, q, r, and so on.
- The omega set Ω is a finite set of elements called operator symbols or logical connectives. The set Ω is partitioned into disjoint subsets as follows:
In this partition, is the set of operator symbols of arity j.
In the more familiar propositional calculi, Ω is typically partitioned as follows:
A frequently adopted convention treats the constant logical values as operators of arity zero, thus:
- The zeta set is a finite set of transformation rules that are called inference rules when they acquire logical applications.
- The iota set is a countable set of initial points that are called axioms when they receive logical interpretations.
की भाषा , इसके सूत्रों के सेट के रूप में भी जाना जाता है, अच्छी तरह से गठित सूत्र, निम्नलिखित नियमों द्वारा आगमनात्मक परिभाषा है:
- आधार: अल्फा सेट का कोई भी तत्व का सूत्र है .
- अगर सूत्र हैं और में है , तब एक सूत्र है।
- बंद: और कुछ का सूत्र नहीं है .
इन नियमों का बार-बार प्रयोग जटिल सूत्रों के निर्माण की अनुमति देता है। उदाहरण के लिए:
- नियम 1 द्वारा, p एक सूत्र है।
- नियम 2 द्वारा, एक सूत्र है।
- नियम 1 द्वारा, q एक सूत्र है।
- नियम 2 द्वारा, एक सूत्र है।
उदाहरण 1। सरल स्वयंसिद्ध प्रणाली
होने देना , कहाँ , , , निम्नानुसार परिभाषित किया गया है:
- सेट तार्किक प्रस्तावों का प्रतिनिधित्व करने के लिए काम करने वाले प्रतीकों का अनगिनत अनंत सेट:
- कार्यात्मक रूप से पूरा सेट तार्किक संचालकों (तार्किक संयोजकता और निषेध) की संख्या इस प्रकार है। संयोजन, वियोग और निहितार्थ के लिए तीन संयोजकों में से (, और →), एक को आदिम के रूप में लिया जा सकता है और अन्य दो को इसके और निषेध के रूप में परिभाषित किया जा सकता है (¬).[11] वैकल्पिक रूप से, सभी तार्किक ऑपरेटरों को एकमात्र पर्याप्त ऑपरेटर के रूप में परिभाषित किया जा सकता है, जैसे शेफर लाइन (नंद)। द्विसशर्त () निश्चित रूप से संयोजन और निहितार्थ के रूप में परिभाषित किया जा सकता है एक प्रस्तावपरक कलन के दो आदिम संचालन के रूप में निषेध और निहितार्थ को अपनाना ओमेगा सेट होने के समान है विभाजन इस प्रकार है:
तब परिभाषित किया जाता है , और परिभाषित किया जाता है .
- सेट (तार्किक कटौती के प्रारंभिक बिंदुओं का सेट, यानी, तार्किक स्वयंसिद्ध) जन लुकासिविक्ज़ द्वारा प्रस्तावित स्वयंसिद्ध प्रणाली है, और हिल्बर्ट प्रणाली के प्रस्ताव-कलन भाग के रूप में उपयोग किया जाता है। स्वयंसिद्ध सभी प्रतिस्थापन उदाहरण हैं:
- सेट रूपांतरण के नियम (अनुमान के नियम) एकमात्र नियम मोडस पोनेन्स है (अर्थात, प्रपत्र के किसी भी सूत्र से और , अनुमान ).
इस प्रणाली का उपयोग मेटामैथ set.mm औपचारिक प्रूफ डेटाबेस में किया जाता है।
उदाहरण 2। प्राकृतिक कटौती प्रणाली
होने देना , कहाँ , , , निम्नानुसार परिभाषित किया गया है:
- अल्फा सेट , प्रतीकों का एक अनगिनत अनंत सेट है, उदाहरण के लिए:
- ओमेगा सेट विभाजन इस प्रकार है:
एक प्रस्तावपरक कलन के निम्नलिखित उदाहरण में, रूपांतरण नियमों को तथाकथित प्राकृतिक कटौती प्रणाली के अनुमान नियमों के रूप में व्याख्या करने का इरादा है। यहां प्रस्तुत विशेष प्रणाली में कोई प्रारंभिक बिंदु नहीं है, जिसका अर्थ है कि तार्किक अनुप्रयोगों के लिए इसकी व्याख्या एक खाली स्वयंसिद्ध सेट से प्रमेयों को प्राप्त करती है।
- शुरुआती बिंदुओं का सेट खाली है, यानी .
- परिवर्तन नियमों का सेट, , का वर्णन इस प्रकार है:
हमारे प्रस्ताविक कलन में ग्यारह अनुमान नियम हैं। ये नियम हमें अन्य सच्चे सूत्रों को प्राप्त करने की अनुमति देते हैं, जो कि सूत्रों का एक सेट है जिसे सत्य माना जाता है। पहले दस केवल यह कहते हैं कि हम अन्य अच्छी तरह से निर्मित सूत्रों से कुछ अच्छी तरह से निर्मित सूत्रों का अनुमान लगा सकते हैं। अंतिम नियम हालांकि इस अर्थ में काल्पनिक तर्क का उपयोग करता है कि नियम के आधार में हम अस्थायी रूप से अनुमानित सूत्रों के सेट का हिस्सा बनने के लिए एक (अप्रमाणित) परिकल्पना मान लेते हैं, यह देखने के लिए कि क्या हम एक निश्चित अन्य सूत्र का अनुमान लगा सकते हैं। चूंकि पहले दस नियम ऐसा नहीं करते हैं, इसलिए उन्हें आमतौर पर गैर-काल्पनिक नियमों के रूप में वर्णित किया जाता है, और अंतिम को एक काल्पनिक नियम के रूप में वर्णित किया जाता है।
रूपांतरण नियमों का वर्णन करने में, हम एक धातुभाषा प्रतीक का परिचय दे सकते हैं . यह अनुमान लगाने के लिए मूल रूप से एक सुविधाजनक आशुलिपि है। स्वरूप है , जिसमें Γ परिसर नामक सूत्रों का एक (संभवतः खाली) सेट है, और ψ एक सूत्र है जिसे निष्कर्ष कहा जाता है। परिवर्तन नियम इसका मतलब है कि अगर हर प्रस्ताव में Γ एक प्रमेय है (या स्वयंसिद्धों के समान सत्य मान है), तब ψ एक प्रमेय भी है। ध्यान दें कि निम्नलिखित नियम संयोजन परिचय पर विचार करते हुए, हम जब भी जानेंगे Γ एक से अधिक सूत्र हैं, हम हमेशा संयोजन का उपयोग करके इसे एक सूत्र में सुरक्षित रूप से कम कर सकते हैं। तो संक्षेप में, उस समय से हम प्रतिनिधित्व कर सकते हैं Γ एक सेट के बजाय एक सूत्र के रूप में। सुविधा के लिए एक और चूक कब है Γ एक खाली सेट है, जिस स्थिति में Γ प्रकट नहीं हो सकता।
- निषेध परिचय
- से और , अनुमान .
- वह है, .
- नकारात्मकता उन्मूलन
- से , अनुमान .
- वह है, .
- दोहरा निषेध उन्मूलन
- से , अनुमान p.
- वह है, .
- संयोजन परिचय
- से p और q, अनुमान .
- वह है, .
- संयोजन विलोपन
- से , अनुमान p.
- से , अनुमान q.
- वह है, और .
- वियोग परिचय
- से p, अनुमान .
- से q, अनुमान .
- वह है, और .
- वियोग उन्मूलन
- से और और , अनुमान r.
- वह है, .
- द्विसशर्त परिचय
- से और , अनुमान .
- वह है, .
द्विसशर्त उन्मूलन: से , अनुमान .
- से , अनुमान .
- वह है, और .
मोडस सेटिंग (सशर्त उन्मूलन): से p और , अनुमान q.
- वह है, .
- सशर्त प्रमाण (सशर्त परिचय)
- [स्वीकार करने से p के प्रमाण की अनुमति देता है q], अनुमान .
- वह है, .
मूल और व्युत्पन्न तर्क रूप
Name | Sequent | Description |
---|---|---|
Modus Ponens | If p then q; p; therefore q | |
Modus Tollens | If p then q; not q; therefore not p | |
Hypothetical Syllogism | If p then q; if q then r; therefore, if p then r | |
Disjunctive Syllogism | Either p or q, or both; not p; therefore, q | |
Constructive Dilemma | If p then q; and if r then s; but p or r; therefore q or s | |
Destructive Dilemma | If p then q; and if r then s; but not q or not s; therefore not p or not r | |
Bidirectional Dilemma | If p then q; and if r then s; but p or not s; therefore q or not r | |
Simplification | p and q are true; therefore p is true | |
Conjunction | p and q are true separately; therefore they are true conjointly | |
Addition | p is true; therefore the disjunction (p or q) is true | |
Composition | If p then q; and if p then r; therefore if p is true then q and r are true | |
De Morgan's Theorem (1) | The negation of (p and q) is equiv. to (not p or not q) | |
De Morgan's Theorem (2) | The negation of (p or q) is equiv. to (not p and not q) | |
Commutation (1) | (p or q) is equiv. to (q or p) | |
Commutation (2) | (p and q) is equiv. to (q and p) | |
Commutation (3) | (p is equiv. to q) is equiv. to (q is equiv. to p) | |
Association (1) | p or (q or r) is equiv. to (p or q) or r | |
Association (2) | p and (q and r) is equiv. to (p and q) and r | |
Distribution (1) | p and (q or r) is equiv. to (p and q) or (p and r) | |
Distribution (2) | p or (q and r) is equiv. to (p or q) and (p or r) | |
Double Negation | and | p is equivalent to the negation of not p |
Transposition | If p then q is equiv. to if not q then not p | |
Material Implication | If p then q is equiv. to not p or q | |
Material Equivalence (1) | (p iff q) is equiv. to (if p is true then q is true) and (if q is true then p is true) | |
Material Equivalence (2) | (p iff q) is equiv. to either (p and q are true) or (both p and q are false) | |
Material Equivalence (3) | (p iff q) is equiv to., both (p or not q is true) and (not p or q is true) | |
Exportation[12] | from (if p and q are true then r is true) we can prove (if q is true then r is true, if p is true) | |
Importation | If p then (if q then r) is equivalent to if p and q then r | |
Tautology (1) | p is true is equiv. to p is true or p is true | |
Tautology (2) | p is true is equiv. to p is true and p is true | |
Tertium non datur (Law of Excluded Middle) | p or not p is true | |
Law of Non-Contradiction | p and not p is false, is a true statement |
प्रस्ताविक कलन में प्रमाण
जब तार्किक अनुप्रयोगों के लिए व्याख्या की जाती है, तो प्रस्तावात्मक कलन के मुख्य उपयोगों में से एक है, प्रस्तावनात्मक सूत्रों के बीच तार्किक तुल्यता के संबंधों को निर्धारित करना। इन संबंधों को उपलब्ध परिवर्तन नियमों के माध्यम से निर्धारित किया जाता है, जिनके क्रम को व्युत्पत्ति या प्रमाण कहा जाता है।
आगामी चर्चा में, एक प्रमाण को क्रमांकित पंक्तियों के अनुक्रम के रूप में प्रस्तुत किया जाता है, जिसमें प्रत्येक पंक्ति में एक सूत्र होता है जिसके बाद उस सूत्र को प्रस्तुत करने का कारण या औचित्य होता है। तर्क का प्रत्येक आधार, अर्थात् तर्क की एक परिकल्पना के रूप में पेश की गई एक धारणा, अनुक्रम की शुरुआत में सूचीबद्ध है और अन्य औचित्य के बदले एक आधार के रूप में चिह्नित है। निष्कर्ष अंतिम पंक्ति पर सूचीबद्ध है। एक सबूत पूरा हो गया है अगर प्रत्येक पंक्ति पिछले वाले से एक परिवर्तन नियम के सही आवेदन से अनुसरण करती है। (विपरीत दृष्टिकोण के लिए, विश्लेषणात्मक झांकी की विधि देखें। प्रूफ-पेड़)।
प्राकृतिक कटौती प्रणाली में एक प्रमाण का उदाहरण
- दिखाना है A → A.
- इसका एक संभावित प्रमाण (जो, हालांकि मान्य है, आवश्यकता से अधिक चरणों को समाविष्ट करता है) को निम्नानुसार व्यवस्थित किया जा सकता है:
Number | Formula | Reason |
---|---|---|
1 | premise | |
2 | From (1) by disjunction introduction | |
3 | From (1) and (2) by conjunction introduction | |
4 | From (3) by conjunction elimination | |
5 | Summary of (1) through (4) | |
6 | From (5) by conditional proof |
व्याख्या मान के रूप में A, अनुमान A. पढ़ना जैसा कि कुछ भी नहीं मानते हुए, इसका अनुमान लगाएं A तात्पर्य A, या यह एक तनातनी है कि A तात्पर्य A, या यह हमेशा सच होता है A तात्पर्य A.
एक शास्त्रीय तर्कवाक्य कलन प्रणाली में एक प्रमाण का उदाहरण
अब हम उसी प्रमेय को सिद्ध करते हैं जन लुकासिविक्ज़ द्वारा ऊपर वर्णित स्वयंसिद्ध प्रणाली में, जो क्लासिकल प्रोपोज़िशनल कैलकुलस के लिए हिल्बर्ट-शैली के डिडक्टिव सिस्टम का एक उदाहरण है।
स्वयंसिद्ध हैं:
- (A1)
- (आआ)
- (आ)
और प्रमाण इस प्रकार है:
- ((A1) का उदाहरण)
- ((A2) का उदाहरण)
- (सेटिंग विधि से (1) और (2) से)
- ((A1) का उदाहरण)
- (सेटिंग विधि से (4) और (3) से)
नियमों की सुदृढ़ता और पूर्णता
नियमों के इस सेट के महत्वपूर्ण गुण यह हैं कि वे सुदृढ़ और पूर्ण हैं। अनौपचारिक रूप से इसका अर्थ है कि नियम सही हैं और किसी अन्य नियम की आवश्यकता नहीं है। इन दावों को निम्नानुसार अधिक औपचारिक बनाया जा सकता है। ध्यान दें कि तर्कवाक्य तर्क की सुदृढ़ता और पूर्णता के प्रमाण स्वयं प्रमाण तर्कवाक्य में प्रमाण नहीं हैं; ये ZFC में प्रमेय हैं जिनका उपयोग मेटाथ्योरी के रूप में किया जाता है # गणित में प्रस्तावपरक तर्क के गुणों को साबित करने के लिए।
हम एक सत्य असाइनमेंट को एक फ़ंक्शन (गणित) के रूप में परिभाषित करते हैं जो प्रस्तावात्मक चर को 'सही' या 'गलत' में मैप करता है। अनौपचारिक रूप से इस तरह के एक सत्य असाइनमेंट को संभावित स्थिति (दर्शन) (या संभावित दुनिया) के विवरण के रूप में समझा जा सकता है जहां कुछ कथन सत्य हैं और अन्य नहीं हैं। सूत्रों के शब्दार्थ को तब परिभाषित करके औपचारिक रूप दिया जा सकता है कि किस स्थिति के लिए उन्हें सत्य माना जाता है, जो कि निम्नलिखित परिभाषा द्वारा किया जाता है।
हम इस तरह के एक सत्य असाइनमेंट को परिभाषित करते हैं A निम्नलिखित नियमों के साथ एक निश्चित सुनिर्मित सूत्र को संतुष्ट करता है:
- A प्रस्तावात्मक चर को संतुष्ट करता है P अगर और केवल अगर A(P) = true
- A संतुष्ट ¬φ अगर और केवल अगर A संतुष्ट नहीं करता φ
- A संतुष्ट (φ ∧ ψ) अगर और केवल अगर A दोनों को संतुष्ट करता है φ और ψ
- A संतुष्ट (φ ∨ ψ) अगर और केवल अगर A दोनों में से कम से कम एक को संतुष्ट करता है φ या ψ
- A संतुष्ट (φ → ψ) अगर और केवल अगर ऐसा नहीं है A संतुष्ट φ लेकिन नहीं ψ
- A संतुष्ट (φ ↔ ψ) अगर और केवल अगर A दोनों को संतुष्ट करता है φ और ψ या उनमें से किसी को भी संतुष्ट नहीं करता है
इस परिभाषा के साथ अब हम यह औपचारिक रूप दे सकते हैं कि सूत्र के लिए इसका क्या अर्थ है φ एक निश्चित सेट द्वारा निहित होना S सूत्रों का। अनौपचारिक रूप से यह सच है अगर सभी दुनिया में संभव है कि सूत्रों का सेट दिया जाए S सूत्र φ भी रखता है। इससे निम्नलिखित औपचारिक परिभाषा प्राप्त होती है: हम कहते हैं कि समुच्चय S अच्छी तरह से गठित सूत्रों का शब्दार्थ एक निश्चित अच्छी तरह से गठित सूत्र (या तात्पर्य) पर जोर देता है φ यदि सभी सत्य असाइनमेंट जो सभी सूत्रों को संतुष्ट करते हैं S संतुष्ट भी φ.
अंत में हम वाक्य-विन्यास को ऐसे परिभाषित करते हैं φ वाक्य-रचना से जुड़ा हुआ है S अगर और केवल अगर हम इसे उन अनुमान नियमों के साथ प्राप्त कर सकते हैं जो ऊपर चरणों की एक सीमित संख्या में प्रस्तुत किए गए थे। यह हमें अनुमान नियमों के समुच्चय के ठोस और पूर्ण होने का वास्तव में अर्थ निकालने की अनुमति देता है:
सुदृढ़ता: यदि सुगठित सूत्रों का समुच्चय S वाक्य रचनात्मक रूप से अच्छी तरह से गठित सूत्र पर जोर देता है φ तब S अर्थपूर्ण रूप से शामिल है φ.
पूर्णता: यदि अच्छी तरह से गठित सूत्रों का सेट S शब्दार्थ अच्छी तरह से गठित सूत्र पर जोर देता है φ तब S वाक्यात्मक रूप से शामिल है φ.
उपरोक्त नियमों के सेट के लिए यह वास्तव में मामला है।
एक सुदृढ़ता प्रमाण का रेखाचित्र
(अधिकांश तार्किक प्रणालियों के लिए, यह प्रमाण की तुलनात्मक रूप से सरल दिशा है)
नोटेशनल कन्वेंशन: चलो G वाक्यों के सेट से अधिक परिवर्तनशील हो। होने देना A, B और C वाक्यों की सीमा। के लिएG वाक्यात्मक रूप से शामिल है Aहम लिखते हैंG को सिद्ध करता A. के लिएG अर्थपूर्ण रूप से शामिल है Aहम लिखते हैंG तात्पर्य A.
हम दिखाना चाहते हैं: (A)(G) (अगर G को सिद्ध करता A, तब G तात्पर्य A).
हमने ध्यान दिया किG को सिद्ध करता Aएक आगमनात्मक परिभाषा है, और यह हमें फॉर्म के दावों को प्रदर्शित करने के लिए तत्काल संसाधन प्रदान करती है G को सिद्ध करता A, तब ... । तो हमारा प्रमाण प्रेरण द्वारा आगे बढ़ता है।
- Basis. Show: If A is a member of G, then G implies A.
- Basis. Show: If A is an axiom, then G implies A.
- Inductive step (induction on n, the length of the proof):
- Assume for arbitrary G and A that if G proves A in n or fewer steps, then G implies A.
- For each possible application of a rule of inference at step n + 1, leading to a new theorem B, show that G implies B.
ध्यान दें कि आधार चरण II को प्राकृतिक कटौती प्रणालियों के लिए छोड़ा जा सकता है क्योंकि उनके पास कोई अभिगृहीत नहीं है। उपयोग किए जाने पर, चरण II में यह दिखाना शामिल है कि प्रत्येक स्वयंसिद्ध एक (सिमेंटिक) तार्किक सत्य है।
बेसिस चरण प्रदर्शित करते हैं कि सरलतम सिद्ध करने योग्य वाक्य G से भी अभिप्राय हैं G, किसी के लिए G. (साक्ष्य सरल है, क्योंकि शब्दार्थ तथ्य यह है कि एक सेट अपने सदस्यों में से किसी को भी दर्शाता है, यह भी तुच्छ है।) आगमनात्मक कदम व्यवस्थित रूप से आगे के सभी वाक्यों को कवर करेगा जो सिद्ध हो सकते हैं - प्रत्येक मामले पर विचार करके जहां हम एक तार्किक निष्कर्ष पर पहुंच सकते हैं। एक अनुमान नियम का उपयोग करना - और दिखाता है कि यदि कोई नया वाक्य साध्य है, तो यह तार्किक रूप से निहित भी है। (उदाहरण के लिए, हमारे पास यह बताने वाला नियम हो सकता है कि fromAहम प्राप्त कर सकते हैंA या B. III.a में हम मानते हैं कि यदि A साध्य है यह निहित है। हम यह भी जानते हैं कि यदि A तब सिद्ध होता हैA या Bसाध्य है। हमें तब दिखाना होगाA या Bभी निहित है। हम सिमेंटिक परिभाषा और हमारे द्वारा अभी बनाई गई धारणा के लिए अपील करके ऐसा करते हैं। A से सिद्ध होता है G, हम यह मानते है कि। तो यह द्वारा भी निहित है G. तो कोई भी सिमेंटिक वैल्यूएशन सभी को बना रहा है G सच बनाता है A सत्य। लेकिन कोई वैल्यूएशन मेकिंग A सच बनाता हैA या Bसच है, या के लिए परिभाषित शब्दार्थ द्वारा। तो कोई भी मूल्यांकन जो सभी को बनाता है G सच बनाता हैA या Bसत्य। इसलिएA या Bनिहित है।) आम तौर पर, इंडक्टिव स्टेप में मामलों द्वारा एक लंबा लेकिन सरल प्रमाण शामिल होगा। मामले-दर-मामला विश्लेषण के सभी नियमों का विश्लेषण, यह दर्शाता है कि प्रत्येक सिमेंटिक निहितार्थ को संरक्षित करता है।
प्रोविबिलिटी की परिभाषा के अनुसार, इसके सदस्य होने के अलावा कोई भी वाक्य सिद्ध नहीं होता है G, एक स्वयंसिद्ध, या एक नियम के अनुसार; इसलिए यदि उन सभी को सिमेंटिक रूप से निहित किया जाता है, तो डिडक्शन कैलकुलस ध्वनि है।
पूर्णता प्रमाण का रेखाचित्र
(यह आमतौर पर प्रमाण की अधिक कठिन दिशा है।)
हम उपरोक्त के समान ही सांकेतिक सम्मेलनों को अपनाते हैं।
हम दिखाना चाहते हैं: यदि G तात्पर्य A, तब G को सिद्ध करता A. हम गर्भनिरोधक द्वारा आगे बढ़ते हैं: इसके बजाय हम दिखाते हैं कि यदि G सिद्ध नहीं होता A तब G मतलब नहीं है A. यदि हम दिखाते हैं कि एक गणितीय मॉडल है जहाँ A बावजूद नहीं रखता G सच हो रहा है, तो जाहिर है G मतलब नहीं है A. विचार यह है कि इस तरह के एक मॉडल को हमारी धारणा से बनाया जाए G सिद्ध नहीं होता A.
- G does not prove A. (Assumption)
- If G does not prove A, then we can construct an (infinite) Maximal Set, G∗, which is a superset of G and which also does not prove A.
- Place an ordering (with order type ω) on all the sentences in the language (e.g., shortest first, and equally long ones in extended alphabetical ordering), and number them (E1, E2, ...)
- Define a series Gn of sets (G0, G1, ...) inductively:
- If proves A, then
- If does not prove A, then
- Define G∗ as the union of all the Gn. (That is, G∗ is the set of all the sentences that are in any Gn.)
- It can be easily shown that
- G∗ contains (is a superset of) G (by (b.i));
- G∗ does not prove A (because the proof would contain only finitely many sentences and when the last of them is introduced in some Gn, that Gn would prove A contrary to the definition of Gn); and
- G∗ is a Maximal Set with respect to A: If any more sentences whatever were added to G∗, it would prove A. (Because if it were possible to add any more sentences, they should have been added when they were encountered during the construction of the Gn, again by definition)
- If G∗ is a Maximal Set with respect to A, then it is truth-like. This means that it contains C if and only if it does not contain ¬C; If it contains C and contains "If C then B" then it also contains B; and so forth. In order to show this, one has to show the axiomatic system is strong enough for the following:
- For any formulas C and D, if it proves both C and ¬C, then it proves D. From this it follows, that a Maximal Set with respect to A cannot prove both C and ¬C, as otherwise it would prove A.
- For any formulas C and D, if it proves both C→D and ¬C→D, then it proves D. This is used, together with the deduction theorem, to show that for any formula, either it or its negation is in G∗: Let B be a formula not in G∗; then G∗ with the addition of B proves A. Thus from the deduction theorem it follows that G∗ proves B→A. But suppose ¬B were also not in G∗, then by the same logic G∗ also proves ¬B→A; but then G∗ proves A, which we have already shown to be false.
- For any formulas C and D, if it proves C and D, then it proves C→D.
- For any formulas C and D, if it proves C and ¬D, then it proves ¬(C→D).
- For any formulas C and D, if it proves ¬C, then it proves C→D.
- If G∗ is truth-like there is a G∗-Canonical valuation of the language: one that makes every sentence in G∗ true and everything outside G∗ false while still obeying the laws of semantic composition in the language. Note that the requirement that it is truth-like is needed to guarantee that the laws of semantic composition in the language will be satisfied by this truth assignment.
- A G∗-canonical valuation will make our original set G all true, and make A false.
- If there is a valuation on which G are true and A is false, then G does not (semantically) imply A.
इस प्रकार प्रत्येक प्रणाली जिसमें एक अनुमान नियम के रूप में मॉडस पोनेन्स है, और निम्नलिखित प्रमेयों को सिद्ध करता है (इसके प्रतिस्थापन सहित) पूर्ण है:
पहले पांच का उपयोग उपरोक्त चरण III में पांच शर्तों की संतुष्टि के लिए किया जाता है, और अंतिम तीन का कटौती प्रमेय को साबित करने के लिए किया जाता है।
उदाहरण
एक उदाहरण के रूप में, यह दिखाया जा सकता है कि किसी भी अन्य पुनरुक्ति के रूप में, पहले वर्णित शास्त्रीय प्रस्तावपरक कलन प्रणाली के तीन स्वयंसिद्धों को किसी भी प्रणाली में सिद्ध किया जा सकता है जो उपरोक्त को संतुष्ट करता है, अर्थात् एक अनुमान नियम के रूप में मॉडस पोनेंस है, और उपरोक्त को सिद्ध करता है आठ प्रमेय (इसके प्रतिस्थापन सहित)। आठ प्रमेयों में से, अंतिम दो तीन स्वयंसिद्धों में से दो हैं; तीसरा स्वयंसिद्ध, , सिद्ध भी किया जा सकता है, जैसा कि अब हम दिखाते हैं।
प्रमाण के लिए हम काल्पनिक न्यायवाक्य #प्रमाण 2 (इस स्वयंसिद्ध प्रणाली के लिए प्रासंगिक रूप में) का उपयोग कर सकते हैं, क्योंकि यह केवल दो स्वयंसिद्धों पर निर्भर करता है जो पहले से ही आठ प्रमेयों के उपरोक्त सेट में हैं। सबूत तो इस प्रकार है:
- (सातवें प्रमेय का उदाहरण)
- (सातवें प्रमेय का उदाहरण)
- (सेटिंग विधि से (1) और (2) से)
- (काल्पनिक न्यायवाक्य प्रमेय का उदाहरण)
- (पांचवें प्रमेय का उदाहरण)
- (से (5) और (4) सेटिंग विधि द्वारा)
- (द्वितीय प्रमेय का उदाहरण)
- (सातवें प्रमेय का उदाहरण)
- (सेटिंग विधि से (7) और (8) से)
-
- (आठवीं प्रमेय का उदाहरण)
- (से (9) और (10) सेटिंग विधि द्वारा)
- ((3) और (11) सेटिंग विधि से)
- (आठवीं प्रमेय का उदाहरण)
- (सेटिंग मोड से (12) और (13) से)
- (सेटिंग मोड से (6) और (14) से)
शास्त्रीय तर्कवाक्य कलन प्रणाली के लिए पूर्णता का सत्यापन
अब हम सत्यापित करते हैं कि पहले वर्णित शास्त्रीय तर्कवाक्य कलन प्रणाली वास्तव में ऊपर उल्लिखित आवश्यक आठ प्रमेयों को सिद्ध कर सकती है। हम हिल्बर्ट सिस्टम द्वारा सिद्ध किए गए कई लेम्मा का उपयोग करते हैं # कुछ उपयोगी प्रमेय और उनके प्रमाण:
- (डीएन1) - दोहरा निषेध#क्लासिकल प्रोपोज़िशनल कैलकुलस सिस्टम में (एक दिशा)
- (डीएन2) - दोहरा निषेध (दूसरी दिशा)
- (एचएस1) - काल्पनिक न्यायवाक्य का एक रूप#वैकल्पिक रूप
- (एचएस2) - काल्पनिक न्यायवाक्य का दूसरा रूप
- (टीआर1) - स्थानान्तरण (तर्क) # शास्त्रीय प्रस्तावपरक कलन प्रणाली में
- (टीआर2) - स्थानान्तरण का दूसरा रूप।
- (L1)
- (एस)
हम परिकल्पनात्मक न्यायवाक्य की विधि का भी प्रयोग करते हैं#एक मेटाथोरम के रूप में कई प्रमाण चरणों के लिए आशुलिपि के रूप में।
- - सबूत:
- ((A1) का उदाहरण)
- ((TR1) का उदाहरण)
- ((1) और (2) काल्पनिक न्यायवाक्य मेटाथोरम का प्रयोग करके)
- ((DN1) का उदाहरण)
- ((HS1) का उदाहरण)
- ((4) और (5) से मॉडस पोनेन्स का उपयोग करके)
- ((3) और (6) काल्पनिक न्यायवाक्य मेटाथोरम का प्रयोग करके)
- - सबूत:
- ((HS1) का उदाहरण)
- ((L3) का उदाहरण)
- ((HS1) का उदाहरण)
- ((2) और (3) सेटिंग विधि से)
- ((1) और (4) काल्पनिक न्यायवाक्य मेटाथोरम का प्रयोग करके)
- ((TR2) का उदाहरण)
- ((HS2) का उदाहरण)
- ((6) और (7) से मॉडस पोनेन्स का प्रयोग करके)
- ((5) और (8) काल्पनिक न्यायवाक्य मेटाथोरम का प्रयोग करके)
- - सबूत:
- ((A1) का उदाहरण)
- ((A1) का उदाहरण)
- ((1) और (2) मोडस पोनेन्स का उपयोग करके)
- - सबूत:
- ((L1) का उदाहरण)
- ((TR1) का उदाहरण)
- ((1) और (2) काल्पनिक न्यायवाक्य मेटाथोरम का प्रयोग करके)
- - सबूत:
- ((A1) का उदाहरण)
- ((A3) का उदाहरण)
- ((1) और (2) काल्पनिक न्यायवाक्य मेटाथोरम का प्रयोग करके)
- - प्रपोजल कैलकुलस में दिया गया प्रूफ # क्लासिकल प्रोपोज़िशनल कैलकुलस सिस्टम में प्रूफ का उदाहरण
- - स्वयंसिद्ध (A1)
- - स्वयंसिद्ध (एए)
पूर्णता प्रमाण के लिए एक अन्य रूपरेखा
यदि कोई सूत्र एक टॉटोलॉजी (तर्क) है, तो उसके लिए एक सत्य तालिका है जो दर्शाती है कि प्रत्येक मूल्यांकन से सूत्र के लिए सही मान प्राप्त होता है। ऐसे मूल्यांकन पर विचार करें। सबफॉर्मुला की लंबाई पर गणितीय प्रेरण से, दिखाएं कि सबफॉर्मुला की सत्यता या असत्यता उपफॉर्मुला में प्रत्येक प्रस्तावक चर के सत्य या असत्यता (मूल्यांकन के लिए उपयुक्त) से होती है। फिर उपयोग करके सत्य तालिका की पंक्तियों को एक साथ दो बार मिलाएं (P सत्य का तात्पर्य है S) तात्पर्य ((P झूठा तात्पर्य है S) तात्पर्य S) . इसे तब तक दोहराते रहें जब तक कि प्रस्तावात्मक चर पर सभी निर्भरताएँ समाप्त नहीं हो जातीं। नतीजा यह है कि हमने दी गई तनातनी को साबित कर दिया है। चूँकि प्रत्येक पुनरुक्ति साध्य है, तर्क पूर्ण है।
एक सत्य-कार्यात्मक प्रस्ताविक कलन की व्याख्या
एक सत्य-कार्यात्मक प्रस्तावपरक कलन की व्याख्या के प्रत्येक प्रस्तावक चर के लिए एक असाइनमेंट (गणितीय तर्क) है सत्य मूल्यों के एक या दूसरे (लेकिन दोनों नहीं) का सत्य (T) और असत्य (तर्क) (F), और के तार्किक संयोजक के लिए एक असाइनमेंट उनके सामान्य सत्य-कार्यात्मक अर्थ। ट्रुथ-फंक्शनल प्रोपोज़िशनल कैलकुलस की व्याख्या को ट्रुथ टेबल के रूप में भी व्यक्त किया जा सकता है।[13] के लिए अलग प्रस्तावात्मक प्रतीक हैं विशिष्ट संभावित व्याख्याएं। किसी विशेष प्रतीक के लिए , उदाहरण के लिए, हैं संभावित व्याख्याएं:
- टी असाइन किया गया है, या
- F सौंपा गया है।
जोड़ी के लिए , वहाँ हैं संभावित व्याख्या:
- दोनों को सौंपा गया है,
- दोनों को F सौंपा गया है,
- टी और सौंपा गया है के लिए आवंटित किया गया है
- F और सौंपा गया है टी सौंपा गया है।[13]
तब से है , अर्थात्, संख्यामूलक रूप से अनंत अनेक प्रस्तावपरक प्रतीक हैं , और इसलिए निरंतरता की कार्डिनैलिटी की अलग-अलग संभावित व्याख्याएं .[13]
सत्य-कार्यात्मक प्रस्तावपरक तर्क के एक वाक्य की व्याख्या
अगर φ और ψ के सूत्र (गणितीय तर्क) हैं और की व्याख्या है तब निम्नलिखित परिभाषाएँ लागू होती हैं:
- व्याख्यात्मक तर्क का एक वाक्य एक व्याख्या के तहत सत्य है अगर उस वाक्य को सत्य मान T प्रदान करता है। यदि किसी व्याख्या के अंतर्गत कोई वाक्य तार्किक सत्य है, तो उस व्याख्या को उस वाक्य का 'मॉडल' कहा जाता है।
- φ एक व्याख्या के तहत गलत है अगर φ के अंतर्गत सत्य नहीं है .[13]* प्रस्तावपरक तर्क का एक वाक्य तार्किक रूप से मान्य है यदि यह हर व्याख्या के तहत सत्य है।
- φ मतलब कि φ तार्किक रूप से मान्य है।
- एक वाक्य ψ प्रस्तावपरक तर्क का एक वाक्य का तार्किक परिणाम है φ अगर जिसके तहत कोई व्याख्या नहीं है φ सच है और ψ गलत है।
- प्रस्तावपरक तर्क का एक वाक्य संगति है यदि यह कम से कम एक व्याख्या के तहत सत्य है। यदि यह सुसंगत नहीं है तो यह असंगत है।
इन परिभाषाओं के कुछ परिणाम:
- किसी दी गई व्याख्या के लिए दिया गया सूत्र या तो सत्य है या असत्य।[13]* कोई भी सूत्र एक ही व्याख्या के अंतर्गत सत्य और असत्य दोनों नहीं होता।[13]* φ दी गई व्याख्या के लिए गलत है iff उस व्याख्या के लिए सही है; और φ एक व्याख्या के तहत सच है iff उस व्याख्या के तहत गलत है।[13]* अगर φ और दोनों एक दी गई व्याख्या के तहत सच हैं, तो ψ उस व्याख्या के तहत सच है।[13]* अगर और , तब .[13]* के अंतर्गत सत्य है iff φ के अंतर्गत सत्य नहीं है .
- के अंतर्गत सत्य है iff दोनों में से एक φ के अंतर्गत सत्य नहीं है या ψ के अंतर्गत सत्य है .[13]* एक वाक्य ψ प्रस्तावपरक तर्क का एक वाक्य का शब्दार्थ परिणाम है φ iff तार्किक रूप से मान्य है, अर्थात iff .[13]
वैकल्पिक पथरी
प्रस्तावपरक कलन के एक अन्य संस्करण को परिभाषित करना संभव है, जो स्वयंसिद्धों के माध्यम से तार्किक संचालकों के अधिकांश वाक्य-विन्यास को परिभाषित करता है, और जो केवल एक अनुमान नियम का उपयोग करता है।
अभिगृहीत
होने देना φ, χ, और ψ अच्छी तरह से गठित सूत्रों के लिए खड़े हो जाओ। (सुगठित सूत्रों में स्वयं कोई ग्रीक अक्षर नहीं होगा, लेकिन केवल बड़े रोमन अक्षर, संयोजी संचालक और कोष्ठक होंगे।) फिर स्वयंसिद्ध इस प्रकार हैं:
Name | Axiom Schema | Description |
---|---|---|
THEN-1 | Add hypothesis χ, implication introduction | |
THEN-2 | Distribute hypothesis over implication | |
AND-1 | Eliminate conjunction | |
AND-2 | ||
AND-3 | Introduce conjunction | |
OR-1 | Introduce disjunction | |
OR-2 | ||
OR-3 | Eliminate disjunction | |
NOT-1 | Introduce negation | |
NOT-2 | Eliminate negation | |
NOT-3 | Excluded middle, classical logic | |
IFF-1 | Eliminate equivalence | |
IFF-2 | ||
IFF-3 | Introduce equivalence |
- स्वयंसिद्ध THEN-2 निहितार्थ के संबंध में निहितार्थ की एक वितरण संपत्ति माना जा सकता है।
- सिद्धांत AND-1 और AND-2 संयोजन विलोपन के अनुरूप। के बीच संबंध AND-1 और AND-2 संयुग्मन संचालक की क्रमविनिमेयता को दर्शाता है।
- स्वयंसिद्ध AND-3 संयोजन परिचय के अनुरूप है।
- सिद्धांत OR-1 और OR-2 संयोजन परिचय के अनुरूप। के बीच संबंध OR-1 और OR-2 संयोजन ऑपरेटर की क्रमविनिमेयता को दर्शाता है।
- स्वयंसिद्ध NOT-1 बेतुके को कम करने के अनुरूप है।
- स्वयंसिद्ध NOT-2 कहते हैं कि विरोधाभास से कुछ भी निकाला जा सकता है।
- स्वयंसिद्ध NOT-3 बहिष्कृत मध्य का नियम कहा जाता है। टर्शियम नॉन-डेटर (लैटिन: एक तीसरा नहीं दिया गया है) और प्रस्तावक सूत्रों के शब्दार्थ मूल्यांकन को दर्शाता है: एक सूत्र में सत्य या असत्य का सत्य-मूल्य हो सकता है। कोई तीसरा सत्य-मूल्य नहीं है, कम से कम शास्त्रीय तर्कशास्त्र में तो नहीं। अंतर्ज्ञानवादी तर्कशास्त्री स्वयंसिद्ध को स्वीकार नहीं करते हैं NOT-3.
अनुमान नियम
अनुमान नियम मॉडस पोनेन्स है:
- .
मेटा-निष्कर्ष नियम
एक प्रदर्शन को एक अनुक्रम द्वारा प्रस्तुत किया जाना चाहिए, जिसमें टर्नस्टाइल (प्रतीक) के बाईं ओर परिकल्पना और टर्नस्टाइल के दाईं ओर निष्कर्ष हो। फिर कटौती प्रमेय को निम्नानुसार कहा जा सकता है:
- यदि अनुक्रम
- प्रदर्शित किया गया है, तो अनुक्रम प्रदर्शित करना भी संभव है
- .
यह कटौती प्रमेय (डीटी) स्वयं प्रस्तावपरक कलन के साथ तैयार नहीं किया गया है: यह प्रस्तावपरक कलन का प्रमेय नहीं है, बल्कि प्रस्तावपरक कलन के बारे में एक प्रमेय है। इस अर्थ में, यह एक मेटा-प्रमेय है, जो प्रस्तावपरक कलन की ध्वनि या पूर्णता के बारे में प्रमेयों के बराबर है।
दूसरी ओर, DT सिंटैक्टिकल प्रूफ प्रक्रिया को सरल बनाने के लिए इतना उपयोगी है कि इसे मॉडस पोनेन्स के साथ एक अन्य अनुमान नियम के रूप में माना और उपयोग किया जा सकता है। इस अर्थ में, डीटी प्राकृतिक सशर्त सबूत अनुमान नियम से मेल खाता है जो इस आलेख में पेश किए गए प्रस्तावपरक कलन के पहले संस्करण का हिस्सा है।
DT का विलोम भी मान्य है:
- यदि अनुक्रम
- प्रदर्शित किया गया है, तो अनुक्रम प्रदर्शित करना भी संभव है
वास्तव में, DT की तुलना में DT के विलोम की वैधता लगभग तुच्छ है:
- अगर
- तब
- 1:
- 2:
- और (1) और (2) से निष्कर्ष निकाला जा सकता है
- 3:
- मोडस पोनेन्स के माध्यम से, Q.E.D.
DT के विलोम के शक्तिशाली निहितार्थ हैं: इसका उपयोग एक स्वयंसिद्ध को एक अनुमान नियम में बदलने के लिए किया जा सकता है। उदाहरण के लिए, अभिगृहीत AND-1 द्वारा हमारे पास,
जिसे निगमन प्रमेय के विलोम द्वारा रूपांतरित किया जा सकता है
जो हमें बताता है कि अनुमान नियम
स्वीकार्य नियम है। यह अनुमान नियम संयोजन विलोपन है, प्रस्ताविक कलन के पहले संस्करण (इस लेख में) में उपयोग किए गए दस अनुमान नियमों में से एक है।
प्रमाण का उदाहरण
निम्नलिखित एक (वाक्यविन्यास) प्रदर्शन का एक उदाहरण है, जिसमें केवल स्वयंसिद्ध शामिल हैं THEN-1 और THEN-2:
सिद्ध करना: (निहितार्थ की संवेदनशीलता)।
सबूत:
-
- स्वयंसिद्ध THEN-2 साथ
-
- स्वयंसिद्ध THEN-1 साथ
-
- से (1) और (2) सेटिंग विधि द्वारा।
-
- स्वयंसिद्ध THEN-1 साथ
-
- (3) और (4) से रखकर
समीकरणीय लॉजिक्स की समानता
पूर्ववर्ती वैकल्पिक कलन हिल्बर्ट-शैली की कटौती प्रणाली का एक उदाहरण है। तर्कवाक्य प्रणालियों के मामले में अभिगृहीत ऐसे शब्द हैं जो तार्किक संयोजकों के साथ निर्मित होते हैं और एकमात्र अनुमान नियम मॉडस पोनेन्स है। उच्च विद्यालय बीजगणित में मानक रूप से अनौपचारिक रूप से उपयोग किए जाने वाले समीकरण तर्क हिल्बर्ट सिस्टम से एक अलग प्रकार की कलन है। इसके प्रमेय समीकरण हैं और इसके निष्कर्ष नियम समानता के गुणों को अभिव्यक्त करते हैं, अर्थात् यह उन पदों की सर्वांगसमता है जो प्रतिस्थापन को स्वीकार करते हैं।
जैसा कि ऊपर बताया गया है क्लासिकल प्रोपोज़िशनल कैलकुलस बूलियन बीजगणित (लॉजिक) के बराबर है, जबकि इंट्यूशनिस्टिक लॉजिक हेयटिंग बीजगणित के बराबर है। तुल्यता संबंधित प्रणालियों के प्रमेयों के प्रत्येक दिशा में अनुवाद द्वारा दिखाया गया है। प्रमेयों शास्त्रीय या अंतर्ज्ञानवादी प्रस्तावपरक कलन का समीकरणों के रूप में अनुवाद किया जाता है क्रमशः बूलियन या हेटिंग बीजगणित। इसके विपरीत प्रमेय बूलियन या हेटिंग बीजगणित का प्रमेय के रूप में अनुवाद किया जाता है क्रमशः शास्त्रीय या अंतर्ज्ञानवादी कलन, जिसके लिए एक मानक संक्षिप्त नाम है। बूलियन बीजगणित के मामले में के रूप में भी अनुवादित किया जा सकता है , लेकिन यह अनुवाद अंतर्ज्ञानवादी रूप से गलत है।
बूलियन और हेटिंग बीजगणित दोनों में असमानता समानता के स्थान पर प्रयोग किया जा सकता है। समानता असमानताओं की एक जोड़ी के रूप में व्यक्त किया जाता है और . इसके विपरीत असमानता समानता के रूप में अभिव्यक्त होता है , या के रूप में . हिल्बर्ट-शैली प्रणालियों के लिए असमानता का महत्व यह है कि यह बाद के कटौती या प्रवेश प्रतीक के अनुरूप है . एक मजबूरी
बीजगणितीय ढांचे के असमानता संस्करण में अनुवादित है
इसके विपरीत बीजगणितीय असमानता अनिवार्यता के रूप में अनुवादित है
- .
निहितार्थ के बीच का अंतर और असमानता या मजबूरी या यह है कि पूर्व तर्क के लिए आंतरिक है जबकि बाद वाला बाहरी है। दो शब्दों के बीच आंतरिक निहितार्थ उसी तरह का एक और शब्द है। दो शब्दों के बीच बाहरी निहितार्थ के रूप में प्रवेश तर्क की भाषा के बाहर एक मेटाट्रूथ व्यक्त करता है, और इसे धातुभाषा का हिस्सा माना जाता है। यहां तक कि जब अध्ययन के तहत तर्क अंतर्ज्ञानवादी है, तब भी आम तौर पर शास्त्रीय रूप से दो-मूल्यवान के रूप में समझा जाता है: या तो बाएं पक्ष में प्रवेश होता है, या कम-या-बराबर, सही पक्ष, या यह नहीं है।
जैसा कि ऊपर वर्णित है और अनुक्रमिक कलन के लिए प्राकृतिक निगमन प्रणालियों के लिए और बीजगणितीय लॉजिक्स से समान लेकिन अधिक जटिल अनुवाद संभव हैं। उत्तरार्द्ध के निहितार्थों को दो-मूल्यवान के रूप में व्याख्या किया जा सकता है, लेकिन एक अधिक अंतर्दृष्टिपूर्ण व्याख्या एक सेट के रूप में है, जिनमें से तत्वों को एक श्रेणी (गणित) के morphisms के रूप में आयोजित सार प्रमाण के रूप में समझा जा सकता है। इस व्याख्या में अनुक्रम कलन का कट नियम श्रेणी में रचना से मेल खाता है। बूलियन और हेटिंग बीजगणित इस तस्वीर को विशेष श्रेणियों के रूप में दर्ज करते हैं, जिसमें प्रति होमसेट में अधिकतम एक मोर्फिज़्म होता है, यानी, एक प्रमाण प्रति प्रवेश, इस विचार के अनुरूप कि प्रमाणों का अस्तित्व ही वह सब है जो मायने रखता है: कोई भी प्रमाण करेगा और उन्हें अलग करने का कोई मतलब नहीं है .
ग्राफिकल कैलकुली
गणितीय संरचनाओं के कई अन्य सेटों को शामिल करने के लिए परिमित आधार पर परिमित अनुक्रमों के एक सेट से एक औपचारिक भाषा की परिभाषा को सामान्य बनाना संभव है, जब तक कि वे परिमित सामग्रियों से परिमित साधनों द्वारा निर्मित हों। क्या अधिक है, औपचारिक संरचनाओं के इन परिवारों में से कई तर्क में उपयोग के लिए विशेष रूप से उपयुक्त हैं।
उदाहरण के लिए, ग्राफ (असतत गणित) के कई परिवार हैं जो औपचारिक भाषाओं के काफी करीब हैं कि एक कलन की अवधारणा काफी आसानी से और स्वाभाविक रूप से उनके लिए विस्तारित है। पाठ संरचनाओं के संबंधित परिवारों के सिंटैक्टिक विश्लेषण में ग्राफ़ की कई प्रजातियाँ पार्स ग्राफ़ के रूप में उत्पन्न होती हैं। औपचारिक भाषाओं पर व्यावहारिक संगणना की अनिवार्यता अक्सर यह मांग करती है कि टेक्स्ट स्ट्रिंग्स को पार्स ग्राफ़ के सूचक संरचना प्रस्तुतियों में परिवर्तित किया जाए, केवल यह जाँचने के मामले में कि स्ट्रिंग्स अच्छी तरह से बनाए गए सूत्र हैं या नहीं। एक बार यह हो जाने के बाद, स्ट्रिंग्स पर कैलकुलस के ग्राफिकल एनालॉग को विकसित करने से कई फायदे प्राप्त होते हैं। स्ट्रिंग्स से पार्स ग्राफ़ तक की मैपिंग को पदच्छेद कहा जाता है और पार्स ग्राफ़ से स्ट्रिंग्स तक उलटा मैपिंग एक ऑपरेशन द्वारा प्राप्त किया जाता है जिसे ग्राफ ट्रैवर्सल ग्राफ़ कहा जाता है।
अन्य तार्किक गणना
प्रस्तावपरक कलन वर्तमान उपयोग में सबसे सरल प्रकार की तार्किक कलन के बारे में है। इसे कई तरह से बढ़ाया जा सकता है। (टर्म लॉजिक | अरिस्टोटेलियन सिलिऑलिस्टिक कैलकुलस, जिसे आधुनिक तर्कशास्त्र में काफी हद तक दबा दिया गया है, कुछ मायनों में सरल है - लेकिन अन्य तरीकों से अधिक जटिल - प्रोपोजल कैलकुलस की तुलना में।) एक अधिक जटिल तार्किक कैलकुलस विकसित करने का सबसे तात्कालिक तरीका नियमों को पेश करना है। उपयोग किए जा रहे वाक्यों के अधिक बारीक विवरण के प्रति संवेदनशील हैं।
प्रथम-क्रम तर्क (उर्फ प्रथम-क्रम विधेय तर्क) परिणाम जब प्रस्तावपरक तर्क के परमाणु वाक्यों को एकवचन शब्द, चर (गणित), विधेय (तर्क), और क्वांटिफायर (तर्क) में विभाजित किया जाता है, सभी के नियमों को ध्यान में रखते हुए प्रस्तावित तर्क के साथ कुछ नए पेश किए गए। (उदाहरण के लिए, सभी कुत्ते स्तनधारी हैं से हम अनुमान लगा सकते हैं कि यदि रोवर एक कुत्ता है तो रोवर एक स्तनपायी है।) प्रथम-क्रम तर्क के उपकरणों के साथ कई सिद्धांतों को तैयार करना संभव है, या तो स्पष्ट स्वयंसिद्धों के साथ या नियमों के द्वारा अनुमान, जिसे स्वयं तार्किक गणना के रूप में माना जा सकता है। अंकगणित इनमें से सबसे प्रसिद्ध है; अन्य में समुच्चय सिद्धान्त और mereology शामिल हैं। दूसरे क्रम के तर्क और अन्य उच्च क्रम के तर्क पहले क्रम के तर्क के औपचारिक विस्तार हैं। इस प्रकार, इन लॉजिक्स के साथ तुलना करते समय, प्रस्तावात्मक तर्क को शून्य-क्रम तर्क के रूप में संदर्भित करना समझ में आता है।
मॉडल तर्क कई प्रकार के अनुमान भी प्रस्तुत करता है जिन्हें प्रस्तावपरक कलन में कैप्चर नहीं किया जा सकता है। उदाहरण के लिए, आवश्यक रूप से pहम इसका अनुमान लगा सकते हैं p. से p हम अनुमान लगा सकते हैं कि यह संभव है p. मोडल लॉजिक्स और बीजगणितीय लॉजिक्स के बीच अनुवाद शास्त्रीय और अंतर्ज्ञानवादी लॉजिक्स से संबंधित है, लेकिन बूलियन या हेटिंग बीजगणित पर एक यूनरी ऑपरेटर की शुरुआत के साथ, बूलियन संचालन से अलग, संभावना के तौर-तरीकों की व्याख्या, और हेटिंग बीजगणित के मामले में एक दूसरा ऑपरेटर आवश्यकता की व्याख्या करता है। (बूलियन बीजगणित के लिए यह अनावश्यक है क्योंकि आवश्यकता संभावना का डी मॉर्गन दोहरा है)। पहला ऑपरेटर 0 और संयोजन को संरक्षित करता है जबकि दूसरा 1 और संयुग्मन को संरक्षित करता है।
बहु-मूल्यवान तर्क वे हैं जो वाक्यों को सत्य और असत्य के अलावा अन्य मूल्यों की अनुमति देते हैं। (उदाहरण के लिए, न तो और दोनों मानक अतिरिक्त मान हैं; सातत्य तर्क प्रत्येक वाक्य को सत्य और असत्य के बीच सत्य की अनंत डिग्री की कोई भी डिग्री रखने की अनुमति देता है।) इन लॉजिक्स को अक्सर गणनात्मक उपकरणों की आवश्यकता होती है जो प्रस्ताविक कलन से काफी भिन्न होते हैं। जब मान एक बूलियन बीजगणित बनाते हैं (जिसमें दो से अधिक या असीम रूप से कई मान हो सकते हैं), बहु-मूल्यवान तर्क शास्त्रीय तर्क में कम हो जाता है; बहु-मूल्यवान तर्क इसलिए केवल स्वतंत्र हित के होते हैं जब मूल्य एक बीजगणित बनाते हैं जो बूलियन नहीं होता है।
सैट सॉल्वर = प्रस्तावपरक तर्क सूत्रों की संतुष्टि का निर्णय करना एक एनपी-पूर्ण समस्या है। हालाँकि, व्यावहारिक तरीके मौजूद हैं (जैसे, DPLL एल्गोरिथम, 1962; चैफ एल्गोरिथम, 2001) जो कई उपयोगी मामलों के लिए बहुत तेज़ हैं। हाल के काम ने SAT सॉल्वर एल्गोरिदम को अंकगणितीय अभिव्यक्तियों वाले प्रस्तावों के साथ काम करने के लिए बढ़ाया है; ये श्रीमती सॉल्वर हैं।
यह भी देखें
उच्च तार्किक स्तर
- पहले क्रम का तर्क
- द्वितीय क्रम प्रस्तावपरक तर्क
- दूसरे क्रम का तर्क
- उच्च-क्रम तर्क
संबंधित विषय
- बूलियन बीजगणित (तर्क)
- बूलियन बीजगणित (संरचना)
- बूलियन बीजगणित विषय
- बूलियन डोमेन
- बूलियन समारोह
- बूलियन-मूल्यवान फ़ंक्शन
- स्पष्ट तर्क
- संयुक्त तर्क
- संयुक्त तर्क
- वैचारिक ग्राफ
- वियोगी न्यायवाक्य
- वास्तविक ग्राफ
- समान तर्क
- अस्तित्वगत ग्राफ
- फ्रीज का प्रस्ताविक कलन
- इम्प्लीकेशनल प्रोपोज़िशनल कैलकुलस
- अंतर्ज्ञानवादी प्रस्तावपरक पथरी
- जीन बुरिदान
- रूप के नियम
- तर्क प्रतीकों की सूची
- तार्किक ग्राफ
- तार्किक NOR
- तार्किक मूल्य
- गणितीय तर्क
- ऑपरेशन (गणित)
- वेनिस के पॉल
- पियर्स का नियम
- स्पेन के पीटर (लेखक)
- प्रस्ताव सूत्र
- सममित अंतर
- टॉटोलॉजी (अनुमान का नियम)
- सत्य समारोह
- ट्रुथ टेबल
- वाल्टर बर्ली
- शेरवुड के विलियम
संदर्भ
- ↑ "Propositional Logic | Brilliant Math & Science Wiki". brilliant.org (in English). Retrieved 2020-08-20.
- ↑ Bobzien, Susanne (1 January 2016). Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy – via Stanford Encyclopedia of Philosophy.
- ↑ "Propositional Logic | Internet Encyclopedia of Philosophy" (in English). Retrieved 2020-08-20.
- ↑ Marenbon, John (2007). Medieval philosophy: an historical and philosophical introduction. Routledge. p. 137.
- ↑ Peckhaus, Volker (1 January 2014). Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy – via Stanford Encyclopedia of Philosophy.
- ↑ Hurley, Patrick (2007). A Concise Introduction to Logic 10th edition. Wadsworth Publishing. p. 392.
- ↑ Beth, Evert W.; "Semantic entailment and formal derivability", series: Mededlingen van de Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Letterkunde, Nieuwe Reeks, vol. 18, no. 13, Noord-Hollandsche Uitg. Mij., Amsterdam, 1955, pp. 309–42. Reprinted in Jaakko Intikka (ed.) The Philosophy of Mathematics, Oxford University Press, 1969
- ↑ 8.0 8.1 Truth in Frege
- ↑ 9.0 9.1 9.2 "Russell: the Journal of Bertrand Russell Studies".
- ↑ Anellis, Irving H. (2012). "Peirce's Truth-functional Analysis and the Origin of the Truth Table". History and Philosophy of Logic. 33: 87–97. doi:10.1080/01445340.2011.621702. S2CID 170654885.
- ↑ Wernick, William (1942) "Complete Sets of Logical Functions," Transactions of the American Mathematical Society 51, pp. 117–132.
- ↑ Toida, Shunichi (2 August 2009). "Proof of Implications". CS381 Discrete Structures/Discrete Mathematics Web Course Material. Department of Computer Science, Old Dominion University. Retrieved 10 March 2010.
- ↑ 13.00 13.01 13.02 13.03 13.04 13.05 13.06 13.07 13.08 13.09 13.10 Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0.
अग्रिम पठन
- Brown, Frank Markham (2003), Boolean Reasoning: The Logic of Boolean Equations, 1st edition, Kluwer Academic Publishers, Norwell, MA. 2nd edition, Dover Publications, Mineola, NY.
- Chang, C.C. and Keisler, H.J. (1973), Model Theory, North-Holland, Amsterdam, Netherlands.
- Kohavi, Zvi (1978), Switching and Finite Automata Theory, 1st edition, McGraw–Hill, 1970. 2nd edition, McGraw–Hill, 1978.
- Korfhage, Robert R. (1974), Discrete Computational Structures, Academic Press, New York, NY.
- Lambek, J. and Scott, P.J. (1986), Introduction to Higher Order Categorical Logic, Cambridge University Press, Cambridge, UK.
- Mendelson, Elliot (1964), Introduction to Mathematical Logic, D. Van Nostrand Company.
संबंधित कार्य
- Hofstadter, Douglas (1979). Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books. ISBN 978-0-465-02656-2.
बाहरी संबंध
- Klement, Kevin C. (2006), "Propositional Logic", in James Fieser and Bradley Dowden (eds.), Internet Encyclopedia of Philosophy, Eprint.
- Formal Predicate Calculus, contains a systematic formal development along the lines of Alternative calculus
- forall x: an introduction to formal logic, by P.D. Magnus, covers formal semantics and proof theory for sentential logic.
- Chapter 2 / Propositional Logic from Logic In Action
- Propositional sequent calculus prover on Project Nayuki. (note: implication can be input in the form
!X|Y
, and a sequent can be a single formula prefixed with>
and having no commas) - Propositional Logic - A Generative Grammar