विस्तारित एक्स-रे अवशोषण ठीक संरचना: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Measurement of X-ray absorption of a material as a function of energy}} {{Technical |date=June 2019}} File:XASFig.jpg|thumb|XAS डेटा के त...")
 
No edit summary
Line 2: Line 2:
{{Technical |date=June 2019}}
{{Technical |date=June 2019}}


[[File:XASFig.jpg|thumb|XAS डेटा के तीन क्षेत्र|440x440px]]विस्तारित [[एक्स-रे]] अवशोषण ठीक संरचना (EXAFS), किनारे संरचना ([[XANES]]) के पास एक्स-रे अवशोषण के साथ, [[एक्स-रे [[अवशोषण स्पेक्ट्रोस्कोपी]]]] (एक्स-रे अवशोषण स्पेक्ट्रोस्कोपी) का एक सबसेट है। अन्य अवशोषण स्पेक्ट्रोस्कोपी की तरह, एक्सएएस तकनीकें बीयर-लैंबर्ट कानून | बीयर के कानून का पालन करती हैं। एक सामग्री का एक्स-रे [[अवशोषण गुणांक]] ऊर्जा के एक कार्य के रूप में एक संकीर्ण ऊर्जा संकल्प के एक्स-रे का उपयोग करके एक नमूने पर निर्देशित किया जाता है और घटना और प्रेषित एक्स-रे तीव्रता को घटना एक्स-रे ऊर्जा में वृद्धि के रूप में दर्ज किया जाता है। .
[[File:XASFig.jpg|thumb|XAS डेटा के तीन क्षेत्र|440x440px]]विस्तारित [[एक्स-रे]] अवशोषण ठीक संरचना (EXAFS), किनारे की संरचना ([[XANES]]) के समीप एक्स-रे अवशोषण के साथ, एक्स-रे [[अवशोषण स्पेक्ट्रोस्कोपी]](XAS) का एक उपवर्ग  है। अन्य अवशोषण स्पेक्ट्रोस्कोपी की भाँति , XAS तकनीकें बीयर-लैंबर्ट नियम  का पालन करती हैं। ऊर्जा के एक कार्य के रूप में एक पदार्थ का एक्स-रे [[अवशोषण गुणांक]] एक नमूने पर निर्देशित एक संकीर्ण ऊर्जा संकल्प के एक्स-रे का उपयोग करके प्राप्त किया जाता है और घटना और प्रेषित एक्स-रे तीव्रता को घटना एक्स-रे ऊर्जा में वृद्धि के रूप में दर्ज किया जाता है। .


जब आपतित एक्स-रे ऊर्जा नमूने के भीतर एक परमाणु के एक [[इलेक्ट्रॉन]] की बाध्यकारी ऊर्जा से मेल खाती है, तो नमूने द्वारा अवशोषित एक्स-रे की संख्या नाटकीय रूप से बढ़ जाती है, जिससे प्रेषित एक्स-रे तीव्रता में गिरावट आती है। इसका परिणाम अवशोषण बढ़त में होता है। प्रत्येक तत्व में अपने इलेक्ट्रॉनों की विभिन्न बाध्यकारी ऊर्जाओं के अनुरूप अद्वितीय अवशोषण किनारों का एक सेट होता है, जो XAS तत्व चयनात्मकता प्रदान करता है। XAS स्पेक्ट्रा को अक्सर [[सिंक्रोटॉन]] में एकत्र किया जाता है क्योंकि सिंक्रोट्रॉन एक्स-रे स्रोतों की उच्च तीव्रता अवशोषित तत्व की एकाग्रता को प्रति मिलियन कुछ भागों के रूप में कम तक पहुंचने की अनुमति देती है। यदि स्रोत बहुत कमजोर है तो अवशोषण ज्ञानी नहीं होगा। क्योंकि एक्स-रे अत्यधिक मर्मज्ञ हैं, XAS नमूने गैस, ठोस या तरल हो सकते हैं।
जब आपतित एक्स-रे ऊर्जा नमूने के भीतर एक परमाणु के एक [[इलेक्ट्रॉन]] की बाध्यकारी ऊर्जा से मेल खाती है, तो नमूने द्वारा अवशोषित एक्स-रे की संख्या प्रभावशाली रूप से बढ़ जाती है, जिससे प्रेषित एक्स-रे तीव्रता में गिरावट आती है। इसका परिणाम अवशोषण बढ़त में होता है। प्रत्येक तत्व में अपने इलेक्ट्रॉनों की विभिन्न बाध्यकारी ऊर्जाओं के अनुरूप अद्वितीय अवशोषण किनारों का एक सेट होता है, जो XAS तत्व चयनात्मकता प्रदान करता है। XAS स्पेक्ट्रा को अक्सर [[सिंक्रोटॉन]] में एकत्र किया जाता है क्योंकि सिंक्रोट्रॉन एक्स-रे स्रोतों की उच्च तीव्रता अवशोषित तत्व की एकाग्रता को प्रति मिलियन कुछ भागों के रूप में कम तक पहुंचने की अनुमति देती है। यदि स्रोत बहुत कमजोर है तो अवशोषण ज्ञानी नहीं होगा। क्योंकि एक्स-रे अत्यधिक मर्मज्ञ हैं, XAS नमूने गैस, ठोस या तरल हो सकते हैं।


== पृष्ठभूमि ==
== पृष्ठभूमि ==
Line 12: Line 12:
सामान्यीकृत अवशोषण स्पेक्ट्रा को अक्सर XANES स्पेक्ट्रा कहा जाता है। नमूने में तत्व के औसत ऑक्सीकरण राज्य को निर्धारित करने के लिए इन स्पेक्ट्रा का उपयोग किया जा सकता है। XANES स्पेक्ट्रा नमूने में अवशोषित परमाणु के समन्वय वातावरण के प्रति भी संवेदनशील हैं। अज्ञात नमूने के XANES स्पेक्ट्रा को ज्ञात मानकों के साथ मिलाने के लिए फिंगर प्रिंटिंग विधियों का उपयोग किया गया है। कई अलग-अलग मानक स्पेक्ट्रा के रैखिक संयोजन फिटिंग अज्ञात नमूने के भीतर प्रत्येक ज्ञात मानक स्पेक्ट्रा की मात्रा का अनुमान लगा सकते हैं।
सामान्यीकृत अवशोषण स्पेक्ट्रा को अक्सर XANES स्पेक्ट्रा कहा जाता है। नमूने में तत्व के औसत ऑक्सीकरण राज्य को निर्धारित करने के लिए इन स्पेक्ट्रा का उपयोग किया जा सकता है। XANES स्पेक्ट्रा नमूने में अवशोषित परमाणु के समन्वय वातावरण के प्रति भी संवेदनशील हैं। अज्ञात नमूने के XANES स्पेक्ट्रा को ज्ञात मानकों के साथ मिलाने के लिए फिंगर प्रिंटिंग विधियों का उपयोग किया गया है। कई अलग-अलग मानक स्पेक्ट्रा के रैखिक संयोजन फिटिंग अज्ञात नमूने के भीतर प्रत्येक ज्ञात मानक स्पेक्ट्रा की मात्रा का अनुमान लगा सकते हैं।


एक्स-रे अवशोषण स्पेक्ट्रा 200 - 35,000 eV की सीमा में निर्मित होते हैं। प्रमुख भौतिक प्रक्रिया वह है जहां अवशोषित फोटॉन अवशोषित परमाणु से एक कोर [[photoelectron]] को बाहर निकालता है, एक कोर होल को पीछे छोड़ देता है। कोर होल वाला परमाणु अब उत्साहित है। उत्सर्जित फोटोइलेक्ट्रॉन की ऊर्जा अवशोषित फोटॉन माइनस प्रारंभिक कोर अवस्था की बाध्यकारी ऊर्जा के बराबर होगी। उत्सर्जित फोटोइलेक्ट्रॉन आसपास के गैर-उत्तेजित परमाणुओं में इलेक्ट्रॉनों के साथ संपर्क करता है।
एक्स-रे अवशोषण स्पेक्ट्रा 200 - 35,000 eV की सीमा में निर्मित होते हैं। प्रमुख भौतिक प्रक्रिया वह है जहां अवशोषित फोटॉन अवशोषित परमाणु से एक कोर [[photoelectron]] को बाहर निकालता है, एक कोर होल को पीछे छोड़ देता है। कोर होल वाला परमाणु अब उत्साहित है। उत्सर्जित फोटोइलेक्ट्रॉन की ऊर्जा अवशोषित फोटॉन माइनस प्रारंभिक कोर अवस्था की बाध्यकारी ऊर्जा के बराबर होगी। उत्सर्जित फोटोइलेक्ट्रॉन आससमीप के गैर-उत्तेजित परमाणुओं में इलेक्ट्रॉनों के साथ संपर्क करता है।


<!-- Image with unknown copyright status removed: [[Image:EXAFS.png|thumb|300px|right|Schematics of the EXAFS process illustrating the origin of EXAFS oscillations due to the interference of outgoing and backscattered photoelectron wave.<ref>[http://www.p-ng.si/~arcon/xas/exafs/exafs.htm Extended X-Ray Absorption Fine Structure, Dr. Alojz Kodre ''et al.'']</ref>]] -->यदि उत्सर्जित फोटोइलेक्ट्रॉन को तरंग जैसी प्रकृति के लिए लिया जाता है और आसपास के परमाणुओं को बिंदु बिखरने वाले के रूप में वर्णित किया जाता है, तो यह कल्पना करना संभव है कि [[backscatter]]ेड इलेक्ट्रॉन तरंगें आगे-प्रसार तरंगों के साथ हस्तक्षेप करती हैं। परिणामी हस्तक्षेप पैटर्न मापा अवशोषण गुणांक के [[मॉडुलन]] के रूप में दिखाई देता है, जिससे EXAFS स्पेक्ट्रा में दोलन होता है। कई वर्षों से EXAFS स्पेक्ट्रा की व्याख्या के लिए एक सरलीकृत विमान-तरंग एकल-प्रकीर्णन सिद्धांत का उपयोग किया गया है, हालांकि आधुनिक तरीकों (जैसे FEFF, GNXAS) ने दिखाया है कि वक्र-तरंग सुधार और बहु-प्रकीर्णन प्रभावों की उपेक्षा नहीं की जा सकती है। फोटोइलेक्ट्रॉन गतिज ऊर्जा की कम ऊर्जा रेंज (5-200 ईवी) में फोटोइलेक्ट्रॉन बिखरने का [[आयाम]] बहुत बड़ा हो जाता है ताकि एक्सएएनईएस (या एनईएक्सएएफएस) स्पेक्ट्रा में कई बिखरने वाली घटनाएं प्रभावी हो जाएं।
<!-- Image with unknown copyright status removed: [[Image:EXAFS.png|thumb|300px|right|Schematics of the EXAFS process illustrating the origin of EXAFS oscillations due to the interference of outgoing and backscattered photoelectron wave.<ref>[http://www.p-ng.si/~arcon/xas/exafs/exafs.htm Extended X-Ray Absorption Fine Structure, Dr. Alojz Kodre ''et al.'']</ref>]] -->यदि उत्सर्जित फोटोइलेक्ट्रॉन को तरंग जैसी प्रकृति के लिए लिया जाता है और आससमीप के परमाणुओं को बिंदु बिखरने वाले के रूप में वर्णित किया जाता है, तो यह कल्पना करना संभव है कि [[backscatter]]ेड इलेक्ट्रॉन तरंगें आगे-प्रसार तरंगों के साथ हस्तक्षेप करती हैं। परिणामी हस्तक्षेप पैटर्न मापा अवशोषण गुणांक के [[मॉडुलन]] के रूप में दिखाई देता है, जिससे EXAFS स्पेक्ट्रा में दोलन होता है। कई वर्षों से EXAFS स्पेक्ट्रा की व्याख्या के लिए एक सरलीकृत विमान-तरंग एकल-प्रकीर्णन सिद्धांत का उपयोग किया गया है, हालांकि आधुनिक तरीकों (जैसे FEFF, GNXAS) ने दिखाया है कि वक्र-तरंग सुधार और बहु-प्रकीर्णन प्रभावों की उपेक्षा नहीं की जा सकती है। फोटोइलेक्ट्रॉन गतिज ऊर्जा की कम ऊर्जा रेंज (5-200 ईवी) में फोटोइलेक्ट्रॉन बिखरने का [[आयाम]] बहुत बड़ा हो जाता है ताकि एक्सएएनईएस (या एनईएक्सएएफएस) स्पेक्ट्रा में कई बिखरने वाली घटनाएं प्रभावी हो जाएं।


फोटोइलेक्ट्रॉन की [[तरंग दैर्ध्य]] बैकस्कैटर्ड तरंग की ऊर्जा और चरण पर निर्भर होती है जो केंद्रीय परमाणु में मौजूद होती है। आने वाले फोटॉन की ऊर्जा के एक समारोह के रूप में तरंग दैर्ध्य बदलता है। पश्च प्रकीर्णन तरंग का चरण (तरंगें) और आयाम पश्च प्रकीर्णन करने वाले परमाणु के प्रकार और केंद्रीय परमाणु से पश्च प्रकीर्णन परमाणु की दूरी पर निर्भर करता है। परमाणु प्रजातियों पर प्रकीर्णन की निर्भरता इन EXAFS डेटा का विश्लेषण करके मूल अवशोषित (केंद्रीय रूप से उत्तेजित) परमाणु के रासायनिक समन्वय वातावरण से संबंधित जानकारी प्राप्त करना संभव बनाती है।
फोटोइलेक्ट्रॉन की [[तरंग दैर्ध्य]] बैकस्कैटर्ड तरंग की ऊर्जा और चरण पर निर्भर होती है जो केंद्रीय परमाणु में मौजूद होती है। आने वाले फोटॉन की ऊर्जा के एक समारोह के रूप में तरंग दैर्ध्य बदलता है। पश्च प्रकीर्णन तरंग का चरण (तरंगें) और आयाम पश्च प्रकीर्णन करने वाले परमाणु के प्रकार और केंद्रीय परमाणु से पश्च प्रकीर्णन परमाणु की दूरी पर निर्भर करता है। परमाणु प्रजातियों पर प्रकीर्णन की निर्भरता इन EXAFS डेटा का विश्लेषण करके मूल अवशोषित (केंद्रीय रूप से उत्तेजित) परमाणु के रासायनिक समन्वय वातावरण से संबंधित जानकारी प्राप्त करना संभव बनाती है।
Line 29: Line 29:
* [[कांच]], अनाकार और [[तरल]] प्रणाली
* [[कांच]], अनाकार और [[तरल]] प्रणाली
* [[ठोस उपाय]]
* [[ठोस उपाय]]
* [[डोपिंग (सेमीकंडक्टर)]] और [[इलेक्ट्रानिक्स]] के लिए सामग्री का [[आयन आरोपण]]
* [[डोपिंग (सेमीकंडक्टर)]] और [[इलेक्ट्रानिक्स]] के लिए पदार्थ का [[आयन आरोपण]]
* [[क्रिस्टल लैटिस]] की स्थानीय विकृतियाँ
* [[क्रिस्टल लैटिस]] की स्थानीय विकृतियाँ
* [[ऑर्गोनोमेटिक रसायन]]
* [[ऑर्गोनोमेटिक रसायन]]
Line 37: Line 37:
* विलयन (रसायन विज्ञान) में आयन
* विलयन (रसायन विज्ञान) में आयन
* तत्वों की प्रजाति
* तत्वों की प्रजाति
XAS क्रिस्टलीय और बहु-घटक सामग्री में स्थानीय संरचनात्मक और थर्मल विकार की ख़ासियत पर विवर्तन जानकारी के लिए पूरक प्रदान करता है।
XAS क्रिस्टलीय और बहु-घटक पदार्थ में स्थानीय संरचनात्मक और थर्मल विकार की ख़ासियत पर विवर्तन जानकारी के लिए पूरक प्रदान करता है।


[[आणविक गतिकी]] या [[रिवर्स मोंटे कार्लो]] पद्धति जैसे परमाणु सिमुलेशन का उपयोग अधिक विश्वसनीय और समृद्ध संरचनात्मक जानकारी निकालने में मदद कर सकता है।
[[आणविक गतिकी]] या [[रिवर्स मोंटे कार्लो]] पद्धति जैसे परमाणु सिमुलेशन का उपयोग अधिक विश्वसनीय और समृद्ध संरचनात्मक जानकारी निकालने में मदद कर सकता है।


== उदाहरण ==
== उदाहरण ==
EXAFS, XANES की तरह, मौलिक विशिष्टता के साथ एक अत्यधिक संवेदनशील तकनीक है। जैसे, EXAFS व्यावहारिक रूप से महत्वपूर्ण प्रजातियों की रासायनिक स्थिति को निर्धारित करने का एक अत्यंत उपयोगी तरीका है जो बहुत कम बहुतायत या एकाग्रता में होता है। पर्यावरण रसायन विज्ञान में EXAFS का बार-बार उपयोग होता है, जहां वैज्ञानिक एक [[पारिस्थितिकी तंत्र]] के माध्यम से [[प्रदूषक]]ों के प्रसार को समझने की कोशिश करते हैं। EXAFS का उपयोग त्वरक द्रव्यमान स्पेक्ट्रोमेट्री के साथ [[फोरेंसिक]] परीक्षाओं में किया जा सकता है, विशेष रूप से [[परमाणु हथियार]] [[अप्रसार]] अनुप्रयोगों में।
EXAFS, XANES की भाँति , मौलिक विशिष्टता के साथ एक अत्यधिक संवेदनशील तकनीक है। जैसे, EXAFS व्यावहारिक रूप से महत्वपूर्ण प्रजातियों की रासायनिक स्थिति को निर्धारित करने का एक अत्यंत उपयोगी तरीका है जो बहुत कम बहुतायत या एकाग्रता में होता है। पर्यावरण रसायन विज्ञान में EXAFS का बार-बार उपयोग होता है, जहां वैज्ञानिक एक [[पारिस्थितिकी तंत्र]] के माध्यम से [[प्रदूषक]]ों के प्रसार को समझने की कोशिश करते हैं। EXAFS का उपयोग त्वरक द्रव्यमान स्पेक्ट्रोमेट्री के साथ [[फोरेंसिक]] परीक्षाओं में किया जा सकता है, विशेष रूप से [[परमाणु हथियार]] [[अप्रसार]] अनुप्रयोगों में।


== इतिहास ==
== इतिहास ==
Line 53: Line 53:


* एक्स-रे अवशोषण स्पेक्ट्रोस्कोपी
* एक्स-रे अवशोषण स्पेक्ट्रोस्कोपी
* [[किनारे की संरचना के पास एक्स-रे अवशोषण]]
* [[किनारे की संरचना के पास एक्स-रे अवशोषण|किनारे की संरचना के समीप एक्स-रे अवशोषण]]
* [[भूतल-विस्तारित एक्स-रे अवशोषण ठीक संरचना]]
* [[भूतल-विस्तारित एक्स-रे अवशोषण ठीक संरचना]]


Line 82: Line 82:
* F.W. Lytle, [http://www.exafsco.com/techpapers/index.html EXAFS वंश वृक्ष: विस्तारित एक्स-रे अवशोषण सूक्ष्म संरचना के विकास का एक व्यक्तिगत इतिहास],
* F.W. Lytle, [http://www.exafsco.com/techpapers/index.html EXAFS वंश वृक्ष: विस्तारित एक्स-रे अवशोषण सूक्ष्म संरचना के विकास का एक व्यक्तिगत इतिहास],
* {{cite journal | last1=Sayers | first1=Dale E. | last2=Stern | first2=Edward A. | last3=Lytle | first3=Farrel W. | title=गैर-क्रिस्टलीय संरचनाओं की जांच के लिए नई तकनीक: विस्तारित एक्स-रे-अवशोषण ठीक संरचना का फूरियर विश्लेषण| journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=27 | issue=18 | date=1 October 1971 | issn=0031-9007 | doi=10.1103/physrevlett.27.1204 | pages=1204–1207| bibcode=1971PhRvL..27.1204S }}
* {{cite journal | last1=Sayers | first1=Dale E. | last2=Stern | first2=Edward A. | last3=Lytle | first3=Farrel W. | title=गैर-क्रिस्टलीय संरचनाओं की जांच के लिए नई तकनीक: विस्तारित एक्स-रे-अवशोषण ठीक संरचना का फूरियर विश्लेषण| journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=27 | issue=18 | date=1 October 1971 | issn=0031-9007 | doi=10.1103/physrevlett.27.1204 | pages=1204–1207| bibcode=1971PhRvL..27.1204S }}
* ए. कोड्रे, आई. आर्कोन, माइक्रोइलेक्ट्रॉनिक, डिवाइसेस और सामग्री पर 36वें अंतर्राष्ट्रीय सम्मेलन की कार्यवाही, एमआईडीईएम, पोस्टोजना, स्लोवेनिया, 28-20 अक्टूबर, (2000), पी। 191-196
* ए. कोड्रे, आई. आर्कोन, माइक्रोइलेक्ट्रॉनिक, डिवाइसेस और पदार्थ पर 36वें अंतर्राष्ट्रीय सम्मेलन की कार्यवाही, एमआईडीईएम, पोस्टोजना, स्लोवेनिया, 28-20 अक्टूबर, (2000), पी। 191-196


==बाहरी संबंध==
==बाहरी संबंध==

Revision as of 17:33, 9 February 2023

XAS डेटा के तीन क्षेत्र

विस्तारित एक्स-रे अवशोषण ठीक संरचना (EXAFS), किनारे की संरचना (XANES) के समीप एक्स-रे अवशोषण के साथ, एक्स-रे अवशोषण स्पेक्ट्रोस्कोपी(XAS) का एक उपवर्ग है। अन्य अवशोषण स्पेक्ट्रोस्कोपी की भाँति , XAS तकनीकें बीयर-लैंबर्ट नियम का पालन करती हैं। ऊर्जा के एक कार्य के रूप में एक पदार्थ का एक्स-रे अवशोषण गुणांक एक नमूने पर निर्देशित एक संकीर्ण ऊर्जा संकल्प के एक्स-रे का उपयोग करके प्राप्त किया जाता है और घटना और प्रेषित एक्स-रे तीव्रता को घटना एक्स-रे ऊर्जा में वृद्धि के रूप में दर्ज किया जाता है। .

जब आपतित एक्स-रे ऊर्जा नमूने के भीतर एक परमाणु के एक इलेक्ट्रॉन की बाध्यकारी ऊर्जा से मेल खाती है, तो नमूने द्वारा अवशोषित एक्स-रे की संख्या प्रभावशाली रूप से बढ़ जाती है, जिससे प्रेषित एक्स-रे तीव्रता में गिरावट आती है। इसका परिणाम अवशोषण बढ़त में होता है। प्रत्येक तत्व में अपने इलेक्ट्रॉनों की विभिन्न बाध्यकारी ऊर्जाओं के अनुरूप अद्वितीय अवशोषण किनारों का एक सेट होता है, जो XAS तत्व चयनात्मकता प्रदान करता है। XAS स्पेक्ट्रा को अक्सर सिंक्रोटॉन में एकत्र किया जाता है क्योंकि सिंक्रोट्रॉन एक्स-रे स्रोतों की उच्च तीव्रता अवशोषित तत्व की एकाग्रता को प्रति मिलियन कुछ भागों के रूप में कम तक पहुंचने की अनुमति देती है। यदि स्रोत बहुत कमजोर है तो अवशोषण ज्ञानी नहीं होगा। क्योंकि एक्स-रे अत्यधिक मर्मज्ञ हैं, XAS नमूने गैस, ठोस या तरल हो सकते हैं।

पृष्ठभूमि

EXAFS अवशोषण स्पेक्ट्रम को किसी दिए गए पदार्थ बनाम ऊर्जा के अवशोषण गुणांक के भूखंडों के रूप में प्रदर्शित किया जाता है, आमतौर पर नमूने में एक तत्व के अवशोषण किनारे से पहले 500 - 1000 यह इलेक्ट्रॉन था रेंज में शुरू होता है। एक्स-रे अवशोषण गुणांक आमतौर पर इकाई चरण ऊंचाई के लिए सामान्यीकृत होता है। यह अवशोषण किनारे से पहले और बाद के क्षेत्र में एक रेखा को वापस करके, पूरे डेटा सेट से प्री-एज लाइन को घटाकर और अवशोषण चरण की ऊंचाई से विभाजित करके किया जाता है, जो कि प्री-एज और पोस्ट के बीच के अंतर से निर्धारित होता है। E0 के मान पर किनारे की रेखाएँ (अवशोषण किनारे पर)।

सामान्यीकृत अवशोषण स्पेक्ट्रा को अक्सर XANES स्पेक्ट्रा कहा जाता है। नमूने में तत्व के औसत ऑक्सीकरण राज्य को निर्धारित करने के लिए इन स्पेक्ट्रा का उपयोग किया जा सकता है। XANES स्पेक्ट्रा नमूने में अवशोषित परमाणु के समन्वय वातावरण के प्रति भी संवेदनशील हैं। अज्ञात नमूने के XANES स्पेक्ट्रा को ज्ञात मानकों के साथ मिलाने के लिए फिंगर प्रिंटिंग विधियों का उपयोग किया गया है। कई अलग-अलग मानक स्पेक्ट्रा के रैखिक संयोजन फिटिंग अज्ञात नमूने के भीतर प्रत्येक ज्ञात मानक स्पेक्ट्रा की मात्रा का अनुमान लगा सकते हैं।

एक्स-रे अवशोषण स्पेक्ट्रा 200 - 35,000 eV की सीमा में निर्मित होते हैं। प्रमुख भौतिक प्रक्रिया वह है जहां अवशोषित फोटॉन अवशोषित परमाणु से एक कोर photoelectron को बाहर निकालता है, एक कोर होल को पीछे छोड़ देता है। कोर होल वाला परमाणु अब उत्साहित है। उत्सर्जित फोटोइलेक्ट्रॉन की ऊर्जा अवशोषित फोटॉन माइनस प्रारंभिक कोर अवस्था की बाध्यकारी ऊर्जा के बराबर होगी। उत्सर्जित फोटोइलेक्ट्रॉन आससमीप के गैर-उत्तेजित परमाणुओं में इलेक्ट्रॉनों के साथ संपर्क करता है।

यदि उत्सर्जित फोटोइलेक्ट्रॉन को तरंग जैसी प्रकृति के लिए लिया जाता है और आससमीप के परमाणुओं को बिंदु बिखरने वाले के रूप में वर्णित किया जाता है, तो यह कल्पना करना संभव है कि backscatterेड इलेक्ट्रॉन तरंगें आगे-प्रसार तरंगों के साथ हस्तक्षेप करती हैं। परिणामी हस्तक्षेप पैटर्न मापा अवशोषण गुणांक के मॉडुलन के रूप में दिखाई देता है, जिससे EXAFS स्पेक्ट्रा में दोलन होता है। कई वर्षों से EXAFS स्पेक्ट्रा की व्याख्या के लिए एक सरलीकृत विमान-तरंग एकल-प्रकीर्णन सिद्धांत का उपयोग किया गया है, हालांकि आधुनिक तरीकों (जैसे FEFF, GNXAS) ने दिखाया है कि वक्र-तरंग सुधार और बहु-प्रकीर्णन प्रभावों की उपेक्षा नहीं की जा सकती है। फोटोइलेक्ट्रॉन गतिज ऊर्जा की कम ऊर्जा रेंज (5-200 ईवी) में फोटोइलेक्ट्रॉन बिखरने का आयाम बहुत बड़ा हो जाता है ताकि एक्सएएनईएस (या एनईएक्सएएफएस) स्पेक्ट्रा में कई बिखरने वाली घटनाएं प्रभावी हो जाएं।

फोटोइलेक्ट्रॉन की तरंग दैर्ध्य बैकस्कैटर्ड तरंग की ऊर्जा और चरण पर निर्भर होती है जो केंद्रीय परमाणु में मौजूद होती है। आने वाले फोटॉन की ऊर्जा के एक समारोह के रूप में तरंग दैर्ध्य बदलता है। पश्च प्रकीर्णन तरंग का चरण (तरंगें) और आयाम पश्च प्रकीर्णन करने वाले परमाणु के प्रकार और केंद्रीय परमाणु से पश्च प्रकीर्णन परमाणु की दूरी पर निर्भर करता है। परमाणु प्रजातियों पर प्रकीर्णन की निर्भरता इन EXAFS डेटा का विश्लेषण करके मूल अवशोषित (केंद्रीय रूप से उत्तेजित) परमाणु के रासायनिक समन्वय वातावरण से संबंधित जानकारी प्राप्त करना संभव बनाती है।

प्रायोगिक विचार

चूंकि EXAFS को ट्यून करने योग्य एक्स-रे स्रोत की आवश्यकता होती है, डेटा अक्सर सिंक्रोट्रॉन पर एकत्र किए जाते हैं, अक्सर beamline पर जो विशेष रूप से उद्देश्य के लिए अनुकूलित होते हैं। किसी विशेष ठोस का अध्ययन करने के लिए एक विशेष सिंक्रोट्रॉन की उपयोगिता संबंधित तत्वों के अवशोषण किनारों पर एक्स-रे फ्लक्स के प्रकीर्णन सिद्धांत और त्वरक भौतिकी में चमक # पर निर्भर करती है।

अनुप्रयोग

एक्सएएस एक अंतःविषय तकनीक है और एक्स-रे विवर्तन की तुलना में इसके अद्वितीय गुणों का उपयोग किया गया है स्थानीय संरचना के विवरण को समझना:

XAS क्रिस्टलीय और बहु-घटक पदार्थ में स्थानीय संरचनात्मक और थर्मल विकार की ख़ासियत पर विवर्तन जानकारी के लिए पूरक प्रदान करता है।

आणविक गतिकी या रिवर्स मोंटे कार्लो पद्धति जैसे परमाणु सिमुलेशन का उपयोग अधिक विश्वसनीय और समृद्ध संरचनात्मक जानकारी निकालने में मदद कर सकता है।

उदाहरण

EXAFS, XANES की भाँति , मौलिक विशिष्टता के साथ एक अत्यधिक संवेदनशील तकनीक है। जैसे, EXAFS व्यावहारिक रूप से महत्वपूर्ण प्रजातियों की रासायनिक स्थिति को निर्धारित करने का एक अत्यंत उपयोगी तरीका है जो बहुत कम बहुतायत या एकाग्रता में होता है। पर्यावरण रसायन विज्ञान में EXAFS का बार-बार उपयोग होता है, जहां वैज्ञानिक एक पारिस्थितिकी तंत्र के माध्यम से प्रदूषकों के प्रसार को समझने की कोशिश करते हैं। EXAFS का उपयोग त्वरक द्रव्यमान स्पेक्ट्रोमेट्री के साथ फोरेंसिक परीक्षाओं में किया जा सकता है, विशेष रूप से परमाणु हथियार अप्रसार अनुप्रयोगों में।

इतिहास

EXAFS (मूल रूप से कोसल की संरचना कहा जाता है) के इतिहास के बारे में एक बहुत विस्तृत, संतुलित और सूचनात्मक विवरण आर. स्टम वॉन बोर्डवेह्र द्वारा दिया गया है।[1] XAFS (EXAFS और XANES) के इतिहास का एक अधिक आधुनिक और सटीक विवरण उस समूह के नेता द्वारा दिया गया है जिसने एडवर्ड ए. स्टर्न द्वारा एक पुरस्कार व्याख्यान में EXAFS का आधुनिक संस्करण विकसित किया था।[2]


यह भी देखें

संदर्भ

  1. Bordwehr, R. Stumm von (1989). "A History of X-ray absorption fine structure". Annales de Physique (in English). 14 (4): 377–465. Bibcode:1989AnPh...14..377S. doi:10.1051/anphys:01989001404037700. ISSN 0003-4169.
  2. Stern, Edward A. (2001-03-01). "Musings about the development of XAFS". Journal of Synchrotron Radiation. 8 (2): 49–54. doi:10.1107/S0909049500014138. ISSN 0909-0495. PMID 11512825.


ग्रन्थसूची

किताबें

  • Calvin, Scott. (2013-05-20). सभी के लिए एक्सएएफएस. Furst, Kirin Emlet. Boca Raton. ISBN 9781439878637. OCLC 711041662.{{cite book}}: CS1 maint: location missing publisher (link)
  • Bunker, Grant, 1954- (2010). एक्सएएफएस का परिचय: एक्स-रे अवशोषण ठीक संरचना स्पेक्ट्रोस्कोपी के लिए एक व्यावहारिक मार्गदर्शिका. Cambridge: Cambridge University Press. ISBN 9780511809194. OCLC 646816275.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Teo, Boon K. (1986). EXAFS: मूल सिद्धांत और डेटा विश्लेषण. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 9783642500312. OCLC 851822691.
  • एक्स-रे अवशोषण: सिद्धांत, अनुप्रयोग, EXAFS, SEXAFS और XANES की तकनीकें. Koningsberger, D. C., Prins, Roelof. New York: Wiley. 1988. ISBN 0471875473. OCLC 14904784.{{cite book}}: CS1 maint: others (link)


पुस्तक अध्याय


कागजात

बाहरी संबंध