बीम (संरचना): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Structural element capable of withstanding loads by resisting bending}}
{{Short description|Structural element capable of withstanding loads by resisting bending}}
[[File:Bending.svg|frame|right|एक समान रूप से वितरित  भार के तहत एक सांख्यिकीय रूप से निर्धारित बीम, झुकना (सैगिंग)]]एक बीम[[ संरचनात्मक तत्व ]] है जो मुख्य रूप से बीम की धुरी पर लागू होने वाले भार का प्रतिरोध करता है (मुख्य रूप से अक्षीय  भार ले जाने के लिए डिज़ाइन किया गया एक तत्व एक अकड़ या स्तंभ होगा)। इसके विक्षेपण का तरीका मुख्य रूप से झुकने से होता है। बीम पर लगाए गए भार के परिणामस्वरूप बीम के समर्थन बिंदुओं पर प्रतिक्रिया बल होता है। बीम पर कार्य करने वाली सभी शक्तियों का कुल प्रभाव अपरूपण बल और बंकन क्षणों का उत्पादन करना है। बीम के भीतर जो बदले में बीम के आंतरिक तनाव और विक्षेपण को प्रेरित करता है और उनके समर्थन के तरीके, प्रोफ़ाइल (क्रॉस-सेक्शन का आकार), संतुलन की स्थिति, लंबाई और उनकी सामग्री की विशेषता है।
[[File:Bending.svg|frame|right|एक समान रूप से वितरित  भार के तहत एक सांख्यिकीय रूप से निर्धारित बीम, झुकना (सैगिंग)]]बीम[[ संरचनात्मक तत्व ]] है जो मुख्य रूप से बीम की धुरी पर लागू होने वाले भार का प्रतिरोध करता है (मुख्य रूप से अक्षीय  भार ले जाने के लिए डिज़ाइन किया गया एक तत्व एक अकड़ या स्तंभ होगा)। इसके विक्षेपण का तरीका मुख्य रूप से झुकने से होता है। बीम पर लगाए गए भार के परिणामस्वरूप बीम के समर्थन बिंदुओं पर प्रतिक्रिया बल होता है। बीम पर कार्य करने वाली सभी शक्तियों का कुल प्रभाव अपरूपण बल और बंकन क्षणों का उत्पादन करना है। बीम के भीतर जो बदले में बीम के आंतरिक तनाव और विक्षेपण को प्रेरित करता है और उनके समर्थन के तरीके, प्रोफ़ाइल (क्रॉस-सेक्शन का आकार), संतुलन की स्थिति, लंबाई और उनकी सामग्री की विशेषता है।


बीम परंपरागत रूप से भवन या असैनिक अभियंत्रण संरचनात्मक तत्वों का वर्णन है जहां बीम क्षैतिज होते हैं और ऊर्ध्वाधर भार उठाते हैं। हालांकि किसी भी संरचना में बीम हो सकते हैं उदाहरण के लिए ऑटोमोबाइल फ्रेम, विमान के घटक, मशीन फ्रेम और अन्य यांत्रिक या संरचनात्मक प्रणालियाँ। इन संरचनाओं में कोई भी संरचनात्मक तत्व किसी भी अभिविन्यास में जो मुख्य रूप से तत्व के अक्ष पर पार्श्व रूप से लागू भार का प्रतिरोध करता है जो एक बीम तत्व होगा।  
बीम परंपरागत रूप से भवन या असैनिक अभियंत्रण संरचनात्मक तत्वों का वर्णन है जहां बीम क्षैतिज होते हैं और ऊर्ध्वाधर भार उठाते हैं। हालांकि किसी भी संरचना में बीम हो सकते हैं उदाहरण के लिए ऑटोमोबाइल फ्रेम, विमान के घटक, मशीन फ्रेम और अन्य यांत्रिक या संरचनात्मक प्रणालियाँ। इन संरचनाओं में कोई भी संरचनात्मक तत्व किसी भी अभिविन्यास में जो मुख्य रूप से तत्व के अक्ष पर पार्श्व रूप से लागू भार का प्रतिरोध करता है जो एक बीम तत्व होगा।  
Line 15: Line 15:
# निरंतर - एक बीम जो दो से अधिक आधारों पर फैली हुई है।
# निरंतर - एक बीम जो दो से अधिक आधारों पर फैली हुई है।
# ब्रैकट - एक पेश बीम जो केवल एक छोर पर तय होता है।
# ब्रैकट - एक पेश बीम जो केवल एक छोर पर तय होता है।
# [[ पुलिंदा ]] - बनाने के लिए केबल या रॉड जोड़कर बीम को मजबूत किया जाता है।<ref>{{cite book|title=The American Architect and Building News, Vol XXIII|date=1888|publisher=James R. Osgood & Co|location=Boston|page=159|url=https://books.google.com/books?id=tKYwAQAAIAAJ&pg=PA159}}</ref>
# [[ पुलिंदा |पुलिंदा]] - बनाने के लिए केबल या रॉड जोड़कर बीम को मजबूत किया जाता है।<ref>{{cite book|title=The American Architect and Building News, Vol XXIII|date=1888|publisher=James R. Osgood & Co|location=Boston|page=159|url=https://books.google.com/books?id=tKYwAQAAIAAJ&pg=PA159}}</ref>
# वसंत पर बीम समर्थन करता है।
# वसंत पर बीम समर्थन करता है।
# लोचदार नींव पर बीम।
# लोचदार नींव पर बीम।


== क्षेत्र का दूसरा क्षण (जड़ता का क्षेत्र क्षण ==
== क्षेत्र का दूसरा क्षण (जड़ता का क्षेत्र क्षण ==
{{main|Second moment of area}}
{{main|क्षेत्र का दूसरा क्षण}}
यूलर -बर्नौली बीम सिद्धांत द्वारा क्षेत्र के दूसरे क्षण का प्रतिनिधित्व करने के लिए उपयोग किया जाता है। यह प्राय: जड़ता के क्षण के रूप में जाना जाता है और dA*r^2 के तटस्थ अक्ष के बारे में योग है  जहां r तटस्थ अक्ष से दूरी है और dA क्षेत्र का एक छोटा सा पैच है। इसलिए इसमें न केवल बीम अनुभाग का कुल क्षेत्रफल सम्मिलित है बल्कि यह भी सम्मिलित है कि क्षेत्र का प्रत्येक बिट अक्ष से कितना दूर है। किसी दिए गए पदार्थ के लिए जितना अधिक होता है झुकने में बीम उतना ही कठोर होता है।
यूलर -बर्नौली बीम सिद्धांत द्वारा क्षेत्र के दूसरे क्षण का प्रतिनिधित्व करने के लिए उपयोग किया जाता है। यह प्राय: जड़ता के क्षण के रूप में जाना जाता है और dA*r^2 के तटस्थ अक्ष के बारे में योग है  जहां r तटस्थ अक्ष से दूरी है और dA क्षेत्र का एक छोटा सा पैच है। इसलिए इसमें न केवल बीम अनुभाग का कुल क्षेत्रफल सम्मिलित है बल्कि यह भी सम्मिलित है कि क्षेत्र का प्रत्येक बिट अक्ष से कितना दूर है। किसी दिए गए पदार्थ के लिए जितना अधिक होता है झुकने में बीम उतना ही कठोर होता है।


Line 28: Line 28:
आंतरिक रूप से बीम भार के अधीन बीम जो मरोड़ या अक्षीय लोडिंग अनुभव को संपीड़ित, तन्य और कतरनी तनाव को प्रेरित नहीं करते हैं जो उनके लिए लागू भार के परिणामस्वरूप होता है। प्राय: गुरुत्वाकर्षण भार के तहत बीम के शीर्ष पर एक छोटे त्रिज्या चाप को घेरने के लिए बीम की मूल लंबाई को थोड़ा कम किया जाता है जिसके परिणामस्वरूप संपीड़न होता है। जबकि बीम के निचले भाग में समान मूल बीम की लंबाई को घेरने के लिए बड़ा त्रिज्या चाप थोड़ा बढ़ाया जाता है और इसलिए यह तनाव में है। विकृति के मोड जहां बीम का शीर्ष चेहरा संपीड़न में होता है जैसा कि एक ऊर्ध्वाधर भार के तहत होता है और यह शिथिल तरीके के रूप में जाना जाता है जहां शीर्ष तनाव में होता है। उदाहरण के लिए एक समर्थन पर हॉगिंग के रूप में जाना जाता है। बीम के मध्य की समान मूल लंबाई प्राय: ऊपर और नीचे के बीच आधा झुकने के रेडियल चाप के समान है और इसलिए यह न तो संपीड़न के अधीन है और न ही तनाव के तहत होती है और तटस्थ अक्ष (बीम में बिंदीदार रेखा) को परिभाषित करती है। समर्थन के ऊपर बीम कतरनी तनाव के संपर्क में है और कुछ[[ प्रबलित कंक्रीट ]]बीम हैं जिनमें कंक्रीट पूरी तरह से स्टील टेंडन द्वारा लिए गए तन्य बलों के साथ संपीड़न में है। इन बीमों को प्रीस्ट्रेस्ड कंक्रीट बीम के रूप में जाना जाता है और लोडिंग स्थितियों के तहत अपेक्षित तनाव से अधिक संपीड़न उत्पन्न करने के लिए गढ़े जाते हैं। उच्च शक्ति वाले स्टील के टेंडन को फैलाया जाता है जबकि बीम को उनके ऊपर डाला जाता है फिर जब कंक्रीट ठीक हो जाता है, तो टेंडन धीरे-धीरे निकल जाते हैं और बीम अक्षीय भार के नीचे होता है। यह सनकी भार एक आंतरिक क्षण बनाता है और बदले में बीम की क्षमता ले जाने के क्षण को बढ़ाता है। वे प्राय: राजमार्ग पुलों पर उपयोग किए जाते हैं।
आंतरिक रूप से बीम भार के अधीन बीम जो मरोड़ या अक्षीय लोडिंग अनुभव को संपीड़ित, तन्य और कतरनी तनाव को प्रेरित नहीं करते हैं जो उनके लिए लागू भार के परिणामस्वरूप होता है। प्राय: गुरुत्वाकर्षण भार के तहत बीम के शीर्ष पर एक छोटे त्रिज्या चाप को घेरने के लिए बीम की मूल लंबाई को थोड़ा कम किया जाता है जिसके परिणामस्वरूप संपीड़न होता है। जबकि बीम के निचले भाग में समान मूल बीम की लंबाई को घेरने के लिए बड़ा त्रिज्या चाप थोड़ा बढ़ाया जाता है और इसलिए यह तनाव में है। विकृति के मोड जहां बीम का शीर्ष चेहरा संपीड़न में होता है जैसा कि एक ऊर्ध्वाधर भार के तहत होता है और यह शिथिल तरीके के रूप में जाना जाता है जहां शीर्ष तनाव में होता है। उदाहरण के लिए एक समर्थन पर हॉगिंग के रूप में जाना जाता है। बीम के मध्य की समान मूल लंबाई प्राय: ऊपर और नीचे के बीच आधा झुकने के रेडियल चाप के समान है और इसलिए यह न तो संपीड़न के अधीन है और न ही तनाव के तहत होती है और तटस्थ अक्ष (बीम में बिंदीदार रेखा) को परिभाषित करती है। समर्थन के ऊपर बीम कतरनी तनाव के संपर्क में है और कुछ[[ प्रबलित कंक्रीट ]]बीम हैं जिनमें कंक्रीट पूरी तरह से स्टील टेंडन द्वारा लिए गए तन्य बलों के साथ संपीड़न में है। इन बीमों को प्रीस्ट्रेस्ड कंक्रीट बीम के रूप में जाना जाता है और लोडिंग स्थितियों के तहत अपेक्षित तनाव से अधिक संपीड़न उत्पन्न करने के लिए गढ़े जाते हैं। उच्च शक्ति वाले स्टील के टेंडन को फैलाया जाता है जबकि बीम को उनके ऊपर डाला जाता है फिर जब कंक्रीट ठीक हो जाता है, तो टेंडन धीरे-धीरे निकल जाते हैं और बीम अक्षीय भार के नीचे होता है। यह सनकी भार एक आंतरिक क्षण बनाता है और बदले में बीम की क्षमता ले जाने के क्षण को बढ़ाता है। वे प्राय: राजमार्ग पुलों पर उपयोग किए जाते हैं।


[[File:Parallam support beam.jpg|thumb|एक लोड-असर वाली दीवार को बदलने के लिए समानांतर स्ट्रैंड लंबर लंबर का एक किरण स्थापित किया गया]]बीम के[[ संरचनात्मक विश्लेषण | संरचनात्मक विश्लेषण]] के लिए प्राथमिक उपकरण यूलर -बर्नौली बीम समीकरण है। यह समीकरण सटीक रूप से पतले बीम के लोचदार व्यवहार का वर्णन करता है जहां बीम की लंबाई की तुलना में क्रॉस अनुभागीय आयाम छोटे होते हैं। अपरूपण बलों और गतिशील स्थितयो में रोटरी जड़ता के कारण विरूपण के लिए एक अलग सिद्धांत को अपनाने की आवश्यकता है। यहां अपनाया गया बीम सूत्रीकरण तिमोशेन्को का है और तुलनात्मक उदाहरण एनएएफईएमएस बेंचमार्क चैलेंज नंबर 7 में पाया जा सकता हैं।<ref>{{cite web|last1=Ramsay|first1=Angus|title=NAFEMS Benchmark Challenge Number 7|url=http://www.ramsay-maunder.co.uk/downloads/nbr07.pdf|website=ramsay-maunder.co.uk|access-date=7 May 2017}}</ref> बीम के विक्षेपण (इंजीनियरिंग) को निर्धारित करने के लिए अन्य गणितीय तरीकों में [[ आभासी कार्य |आभासी कार्य]] की विधि और ढलान विक्षेपण विधि सम्मिलित है। इंजीनियर विक्षेपण का निर्धारण करने में रुचि रखते हैं क्योंकि बीम [[ कांच |कांच]] जैसी भंगुर सामग्री के साथ सीधे संपर्क में हो सकता है। सौंदर्य संबंधी कारणों से बीम विक्षेपण को भी कम किया जाता है। दिखने में सैगिंग बीम भले ही संरचनात्मक रूप से सुरक्षित हो, भद्दा है और इससे बचा जाना चाहिए। एक कठोर बीम (लोच का उच्च मापांक और क्षेत्र के उच्च दूसरे क्षण में से एक) कम विक्षेपण पैदा करता है।     
[[File:Parallam support beam.jpg|thumb|लोड-असर वाली दीवार को बदलने के लिए समानांतर स्ट्रैंड लंबर लंबर का एक किरण स्थापित किया गया]]बीम के[[ संरचनात्मक विश्लेषण | संरचनात्मक विश्लेषण]] के लिए प्राथमिक उपकरण यूलर -बर्नौली बीम समीकरण है। यह समीकरण सटीक रूप से पतले बीम के लोचदार व्यवहार का वर्णन करता है जहां बीम की लंबाई की तुलना में क्रॉस अनुभागीय आयाम छोटे होते हैं। अपरूपण बलों और गतिशील स्थितयो में रोटरी जड़ता के कारण विरूपण के लिए एक अलग सिद्धांत को अपनाने की आवश्यकता है। यहां अपनाया गया बीम सूत्रीकरण तिमोशेन्को का है और तुलनात्मक उदाहरण एनएएफईएमएस बेंचमार्क चैलेंज नंबर 7 में पाया जा सकता हैं।<ref>{{cite web|last1=Ramsay|first1=Angus|title=NAFEMS Benchmark Challenge Number 7|url=http://www.ramsay-maunder.co.uk/downloads/nbr07.pdf|website=ramsay-maunder.co.uk|access-date=7 May 2017}}</ref> बीम के विक्षेपण (इंजीनियरिंग) को निर्धारित करने के लिए अन्य गणितीय तरीकों में [[ आभासी कार्य |आभासी कार्य]] की विधि और ढलान विक्षेपण विधि सम्मिलित है। इंजीनियर विक्षेपण का निर्धारण करने में रुचि रखते हैं क्योंकि बीम [[ कांच |कांच]] जैसी भंगुर सामग्री के साथ सीधे संपर्क में हो सकता है। सौंदर्य संबंधी कारणों से बीम विक्षेपण को भी कम किया जाता है। दिखने में सैगिंग बीम भले ही संरचनात्मक रूप से सुरक्षित हो, भद्दा है और इससे बचा जाना चाहिए। एक कठोर बीम (लोच का उच्च मापांक और क्षेत्र के उच्च दूसरे क्षण में से एक) कम विक्षेपण पैदा करता है।     


बीम बलों (बीम के आंतरिक बलों और बीम समर्थन पर लगाए जाने वाले बलों) को निर्धारित करने के लिए गणितीय विधियों में " क्षण वितरण विधि ", बल या लचीलापन विधि और प्रत्यक्ष कठोरता विधि सम्मिलित है।
बीम बलों (बीम के आंतरिक बलों और बीम समर्थन पर लगाए जाने वाले बलों) को निर्धारित करने के लिए गणितीय विधियों में " क्षण वितरण विधि ", बल या लचीलापन विधि और प्रत्यक्ष कठोरता विधि सम्मिलित है।
Line 35: Line 35:
प्रबलित कंक्रीट इमारतों में अधिकांश बीम में आयताकार क्रॉस अनुभाग होते हैं लेकिन बीम के लिए एक अधिक कुशल क्रॉस अनुभाग{{ibeam}} या H अनुभाग होता है जो प्राय: स्टील निर्माण में देखा जाता है। समानांतर अक्ष प्रमेय और तथ्य यह है कि अधिकांश सामग्री तटस्थ धुरी से दूर है बीम के क्षेत्र का दूसरा पल बढ़ता है जो बदले में कठोरता को बढ़ाता है।         
प्रबलित कंक्रीट इमारतों में अधिकांश बीम में आयताकार क्रॉस अनुभाग होते हैं लेकिन बीम के लिए एक अधिक कुशल क्रॉस अनुभाग{{ibeam}} या H अनुभाग होता है जो प्राय: स्टील निर्माण में देखा जाता है। समानांतर अक्ष प्रमेय और तथ्य यह है कि अधिकांश सामग्री तटस्थ धुरी से दूर है बीम के क्षेत्र का दूसरा पल बढ़ता है जो बदले में कठोरता को बढ़ाता है।         


[[File:Ahmaskoski_road_bridge.JPG|thumb|एक {{ibeam}} एक पुल के नीचे धातु के आकार का बीम]]एक {{ibeam}}-बीम झुकने की एक दिशा में केवल सबसे कुशल आकार है: ऊपर और नीचे प्रोफ़ाइल को एक {{ibeam}} के रूप में देखना। यदि बीम अगल-बगल मुड़ी हुई है, तो यह एक  {{hbeam}} के रूप में कार्य करती है जहां यह कम कुशल है। 2डी में दोनों दिशाओं के लिए सबसे कुशल आकार का एक बॉक्स (एक चौकोर खोल) है। हालांकि किसी भी दिशा में झुकने के लिए सबसे कुशल आकार एक बेलनाकार खोल या ट्यूब है। यूनिडायरेक्शनल झुकने के लिए {{ibeam}} या विस्तृत निकला हुआ किनारा बीम बेहतर है।{{Citation needed|date=January 2011}}
[[File:Ahmaskoski_road_bridge.JPG|thumb|एक {{ibeam}} एक पुल के नीचे धातु के आकार का बीम]]एक {{ibeam}}-बीम झुकने की एक दिशा में केवल सबसे कुशल आकार है: ऊपर और नीचे प्रोफ़ाइल को एक {{ibeam}} के रूप में देखना। यदि बीम अगल-बगल मुड़ी हुई है, तो यह एक  {{hbeam}} के रूप में कार्य करती है जहां यह कम कुशल है। 2डी में दोनों दिशाओं के लिए सबसे कुशल आकार का एक बॉक्स (एक चौकोर खोल) है। हालांकि किसी भी दिशा में झुकने के लिए सबसे कुशल आकार एक बेलनाकार खोल या ट्यूब है। यूनिडायरेक्शनल झुकने के लिए {{ibeam}} या विस्तृत निकला हुआ किनारा बीम बेहतर है।
दक्षता का अर्थ है कि एक ही क्रॉस अनुभागीय क्षेत्र (प्रति लंबाई बीम की मात्रा) के लिए समान लोडिंग स्थितियों के अधीन बीम कम विक्षेपित करता है।
दक्षता का अर्थ है कि एक ही क्रॉस अनुभागीय क्षेत्र (प्रति लंबाई बीम की मात्रा) के लिए समान लोडिंग स्थितियों के अधीन बीम कम विक्षेपित करता है।


अन्य आकृतियाँ जैसे {{Lbeam}} (कोण), संरचनात्मक चैनल {{Cbeam}} (चैनल), {{Tbeam}}-बीम और डबल-{{Tbeam}} या ट्यूबों का उपयोग निर्माण में भी किया जाता है जब विशेष आवश्यकताएं होती हैं।
अन्य आकृतियाँ जैसे {{Lbeam}} (कोण), संरचनात्मक चैनल {{Cbeam}} (चैनल), {{Tbeam}}-बीम और डबल-{{Tbeam}} या नलियाँ का उपयोग निर्माण में भी किया जाता है जब विशेष आवश्यकताएं होती हैं।


== पतली दीवारें ==
== पतली दीवारें ==
{{main|Thin walled beams}}
{{main|पतली दीवार वाली बीम}}
एक '''पतली दीवार वाली बीम''' एक बहुत ही उपयोगी प्रकार की बीम (संरचना) है।''पतली दीवारों वाले बीम'' का क्रॉस अनुभाग एक बीम (संरचना) के बंद या खुले क्रॉस अनुभाग बनाने के लिए आपस में जुड़े पतले पैनलों से बना होता है। विशिष्ट बंद वर्गों में गोल, चौकोर और आयताकार ट्यूब आई-बीम, टी-बीम, एल-बीम आदि सम्मिलित हैं। पतली दीवार वाले बीम स्थित हैं क्योंकि प्रति यूनिट क्रॉस अनुभागीय क्षेत्र में उनकी झुकने वाली कठोरता ठोस क्रॉस अनुभाग जैसे छड़ या बार के लिए बहुत अधिक है। इस प्रकार न्यूनतम भार के साथ कठोर बीम प्राप्त किए जा सकते हैं। पतली दीवार वाले बीम विशेष रूप से उपयोगी होते हैं जब सामग्री एक समग्र टुकड़े टुकड़े होती है। समग्र टुकड़े टुकड़े पतली दीवार वाले बीम पर प्रथम अन्वेषक कार्य लिब्रेस्कु द्वारा किया गया था।     
 
एक बीम की मरोड़ कठोरता इसके क्रॉस अनुभागीय आकार से बहुत प्रभावित होती है। खुले वर्गों के लिए जैसे कि {{ibeam}} खंड विकृत विक्षेपण होते हैं जो यदि संयमित होते हैं, तो मरोड़ वाली कठोरता को बहुत बढ़ा देते हैं।<ref>{{cite web|last1=Ramsay|first1=Angus|title=The Influence and Modelling of Warping Restraint on Beams|url=http://www.ramsay-maunder.co.uk/knowledge-base/publications/the-influence-and-modelling-of-warping-restraint-on-beams/|website=ramsay-maunder.co.uk|access-date=7 May 2017}}</ref>


'''पतली दीवार वाली बीम''' एक बहुत ही उपयोगी प्रकार की बीम (संरचना) है।''पतली दीवारों वाले बीम'' का क्रॉस अनुभाग एक बीम (संरचना) के बंद या खुले क्रॉस अनुभाग बनाने के लिए आपस में जुड़े पतले पैनलों से बना होता है। विशिष्ट बंद वर्गों में गोल, चौकोर और आयताकार ट्यूब आई-बीम, टी-बीम, एल-बीम आदि सम्मिलित हैं। पतली दीवार वाले बीम स्थित हैं क्योंकि प्रति यूनिट क्रॉस अनुभागीय क्षेत्र में उनकी झुकने वाली कठोरता ठोस क्रॉस अनुभाग जैसे छड़ या बार के लिए बहुत अधिक है। इस प्रकार न्यूनतम भार के साथ कठोर बीम प्राप्त किए जा सकते हैं। पतली दीवार वाले बीम विशेष रूप से उपयोगी होते हैं जब सामग्री एक समग्र टुकड़े टुकड़े होती है। समग्र टुकड़े टुकड़े पतली दीवार वाले बीम पर प्रथम अन्वेषक कार्य लिब्रेस्कु द्वारा किया गया था।     


बीम की मरोड़ कठोरता इसके क्रॉस अनुभागीय आकार से बहुत प्रभावित होती है। खुले वर्गों के लिए जैसे कि {{ibeam}} खंड विकृत विक्षेपण होते हैं जो यदि संयमित होते हैं, तो मरोड़ वाली कठोरता को बहुत बढ़ा देते हैं।<ref>{{cite web|last1=Ramsay|first1=Angus|title=The Influence and Modelling of Warping Restraint on Beams|url=http://www.ramsay-maunder.co.uk/knowledge-base/publications/the-influence-and-modelling-of-warping-restraint-on-beams/|website=ramsay-maunder.co.uk|access-date=7 May 2017}}</ref>
== यह भी देखें ==
== यह भी देखें ==
* [[ हवादार अंक ]]
* [[ हवादार अंक |हवादार अंक]]
* [[ बीम इंजन ]]
* [[ बीम इंजन |बीम इंजन]]
* [[ निर्माण कोड ]]
* [[ निर्माण कोड |निर्माण कोड]]
* [[ ब्रैकट ]]
* [[ ब्रैकट |ब्रैकट]]
* [[ शास्त्रीय यांत्रिकी ]]
* [[ शास्त्रीय यांत्रिकी |शास्त्रीय यांत्रिकी]]
* विक्षेपण (इंजीनियरिंग)
* विक्षेपण (इंजीनियरिंग)
* [[ लोच (भौतिकी) ]] और [[ प्लास्टिसिटी (भौतिकी) ]]
* [[ लोच (भौतिकी) |लोच (भौतिकी)]] और [[ प्लास्टिसिटी (भौतिकी) ]]
* यूलर -बर्नौली बीम थ्योरी
* यूलर -बर्नौली बीम थ्योरी
* [[ संरचनात्मक यांत्रिकी में परिमित तत्व विधि ]]
* [[ संरचनात्मक यांत्रिकी में परिमित तत्व विधि |संरचनात्मक यांत्रिकी में परिमित तत्व विधि]]
* [[ आनमनी मापांक ]]
* [[ आनमनी मापांक |आनमनी मापांक]]
* [[ मुफ्त शरीर आरेख ]]
* [[ मुफ्त शरीर आरेख |मुफ्त शरीर आरेख]]
* [[ प्रभाव रेखा ]]
* [[ प्रभाव रेखा |प्रभाव रेखा]]
* सामग्री विज्ञान और [[ सामग्री की ताकत ]]
* सामग्री विज्ञान और [[ सामग्री की ताकत ]]
* [[ क्षण (भौतिकी) ]]
* [[ क्षण (भौतिकी) |क्षण (भौतिकी)]]
* पिज़ोन अनुपात
* पिज़ोन अनुपात
* [[ पोस्ट और सरदल ]]
* [[ पोस्ट और सरदल |पोस्ट और सरदल]]
* [[ कतरनी ताकत ]]
* [[ कतरनी ताकत |कतरनी ताकत]]
* [[ स्थिति-विज्ञान ]] और स्टेटिकली अनिश्चित
* [[ स्थिति-विज्ञान |स्थिति-विज्ञान]] और स्टेटिकली अनिश्चित
* [[ तनाव (यांत्रिकी) ]] और [[ तनाव (सामग्री विज्ञान) ]]
* [[ तनाव (यांत्रिकी) |तनाव (यांत्रिकी)]] और [[ तनाव (सामग्री विज्ञान) ]]
* पतली-शेल संरचना
* पतली-शेल संरचना
* [[ टिम्बर फ्रेमिंग ]]
* [[ टिम्बर फ्रेमिंग |टिम्बर फ्रेमिंग]]
* ट्रस
* ट्रस
* परम तन्य शक्ति और हुक का कानून
* परम तन्य शक्ति और हुक का नियम
* [[ उपज (इंजीनियरिंग) ]]
* [[ उपज (इंजीनियरिंग) |उपज (इंजीनियरिंग)]]


==संदर्भ==
==संदर्भ==
Line 90: Line 89:


==बाहरी कड़ियाँ==
==बाहरी कड़ियाँ==
{{Commons category|Beams}}
* [http://www.awc.org/ American Wood Council]: [https://web.archive.org/web/20070210155548/http://www.awc.org/Publications/download.html  Free Download Library] Wood Construction Data
* [http://www.awc.org/ American Wood Council]: [https://web.archive.org/web/20070210155548/http://www.awc.org/Publications/download.html  Free Download Library] Wood Construction Data
* [http://www.arch.virginia.edu/~km6e/arch324/ Introduction to Structural Design], U. Virginia Dept. Architecture
* [http://www.arch.virginia.edu/~km6e/arch324/ Introduction to Structural Design], U. Virginia Dept. Architecture
Line 99: Line 97:
* [https://web.archive.org/web/20070212205812/http://physics.uwstout.edu/statstr/Strength/indexfbt.htm U. Wisconsin–Stout, Strength of Materials] online lectures, problems, tests/solutions, links, software
* [https://web.archive.org/web/20070212205812/http://physics.uwstout.edu/statstr/Strength/indexfbt.htm U. Wisconsin–Stout, Strength of Materials] online lectures, problems, tests/solutions, links, software
*[https://web.archive.org/web/20070302091811/http://physics.uwstout.edu/StatStr/Strength/Beams/beam41.htm Beams I – Shear Forces and Bending Moments]
*[https://web.archive.org/web/20070302091811/http://physics.uwstout.edu/StatStr/Strength/Beams/beam41.htm Beams I – Shear Forces and Bending Moments]
{{Structural engineering topics}}
{{Authority control}}
{{Authority control}}
[[Category: स्थिति-विज्ञान]] [[Category: ठोस यांत्रिकी]] [[Category: संरचनात्मक तंत्र]] [[Category: पुल घटक]]  
[[Category: स्थिति-विज्ञान]] [[Category: ठोस यांत्रिकी]] [[Category: संरचनात्मक तंत्र]] [[Category: पुल घटक]]  

Revision as of 11:38, 21 February 2023

एक समान रूप से वितरित भार के तहत एक सांख्यिकीय रूप से निर्धारित बीम, झुकना (सैगिंग)

बीमसंरचनात्मक तत्व है जो मुख्य रूप से बीम की धुरी पर लागू होने वाले भार का प्रतिरोध करता है (मुख्य रूप से अक्षीय भार ले जाने के लिए डिज़ाइन किया गया एक तत्व एक अकड़ या स्तंभ होगा)। इसके विक्षेपण का तरीका मुख्य रूप से झुकने से होता है। बीम पर लगाए गए भार के परिणामस्वरूप बीम के समर्थन बिंदुओं पर प्रतिक्रिया बल होता है। बीम पर कार्य करने वाली सभी शक्तियों का कुल प्रभाव अपरूपण बल और बंकन क्षणों का उत्पादन करना है। बीम के भीतर जो बदले में बीम के आंतरिक तनाव और विक्षेपण को प्रेरित करता है और उनके समर्थन के तरीके, प्रोफ़ाइल (क्रॉस-सेक्शन का आकार), संतुलन की स्थिति, लंबाई और उनकी सामग्री की विशेषता है।

बीम परंपरागत रूप से भवन या असैनिक अभियंत्रण संरचनात्मक तत्वों का वर्णन है जहां बीम क्षैतिज होते हैं और ऊर्ध्वाधर भार उठाते हैं। हालांकि किसी भी संरचना में बीम हो सकते हैं उदाहरण के लिए ऑटोमोबाइल फ्रेम, विमान के घटक, मशीन फ्रेम और अन्य यांत्रिक या संरचनात्मक प्रणालियाँ। इन संरचनाओं में कोई भी संरचनात्मक तत्व किसी भी अभिविन्यास में जो मुख्य रूप से तत्व के अक्ष पर पार्श्व रूप से लागू भार का प्रतिरोध करता है जो एक बीम तत्व होगा।

अवलोकन

ऐतिहासिक रूप से बीम लकड़ी के चौकोर होते थे लेकिन धातु, पत्थर या लकड़ी और धातु के संयोजन जैसे स्पंदन बीम भी होते हैं। बीम मुख्य रूप से लंबवत गुरुत्वाकर्षण बल ले जाते हैं। उनका उपयोग क्षैतिज भार ले जाने के लिए भी किया जाता है (उदाहरण के लिए भूकंप या हवा के कारण भार या टाई बीम के रूप में राफ्टर जोर का विरोध करने के लिए या कॉलर बीम के रूप में संपीड़न)। एक बीम द्वारा किए गए भार को स्तंभों, दीवारों या गर्डर्स में स्थानांतरित किया जाता है और अंत में जमीन पर हल्के फ्रेम निर्माण में धरन बीम पर आराम कर सकते हैं।

समर्थन के आधार पर वर्गीकरण

इंजीनियरिंग में बीम कई प्रकार के होते हैं:[1]

  1. बस समर्थित - सिरों पर समर्थित एक बीम जो घूमने के लिए स्वतंत्र है और इसका कोई क्षण प्रतिरोध नहीं है।
  2. फिक्स्ड या एनकैस्ट्रे (एनकैस्ट्रेटेड) - दोनों सिरों पर समर्थित एक बीम और रोटेशन से रोक दिया गया।
  3. ओवरहैंगिंग - एक छोर पर इसके समर्थन से परे फैली हुई एक साधारण बीम।
  4. डबल ओवरहैंगिंग - दोनों छोरों के साथ एक साधारण बीम दोनों सिरों पर इसके समर्थन से परे फैली हुई है।
  5. निरंतर - एक बीम जो दो से अधिक आधारों पर फैली हुई है।
  6. ब्रैकट - एक पेश बीम जो केवल एक छोर पर तय होता है।
  7. पुलिंदा - बनाने के लिए केबल या रॉड जोड़कर बीम को मजबूत किया जाता है।[2]
  8. वसंत पर बीम समर्थन करता है।
  9. लोचदार नींव पर बीम।

क्षेत्र का दूसरा क्षण (जड़ता का क्षेत्र क्षण

यूलर -बर्नौली बीम सिद्धांत द्वारा क्षेत्र के दूसरे क्षण का प्रतिनिधित्व करने के लिए उपयोग किया जाता है। यह प्राय: जड़ता के क्षण के रूप में जाना जाता है और dA*r^2 के तटस्थ अक्ष के बारे में योग है जहां r तटस्थ अक्ष से दूरी है और dA क्षेत्र का एक छोटा सा पैच है। इसलिए इसमें न केवल बीम अनुभाग का कुल क्षेत्रफल सम्मिलित है बल्कि यह भी सम्मिलित है कि क्षेत्र का प्रत्येक बिट अक्ष से कितना दूर है। किसी दिए गए पदार्थ के लिए जितना अधिक होता है झुकने में बीम उतना ही कठोर होता है।

एक साधारण वर्ग बीम (ए) और सार्वभौमिक बीम (बी) की कठोरता का आरेख।सार्वभौमिक बीम निकला हुआ किनारा खंड ठोस बीम के ऊपरी और निचले हिस्सों की तुलना में तीन गुना आगे हैं।सार्वभौमिक बीम की जड़ता का दूसरा क्षण नौ गुना है जो कि समान क्रॉसअनुभागके वर्ग बीम का है (यूनिवर्सल बीम वेब सरलीकरण के लिए अनदेखा)

तनाव

आंतरिक रूप से बीम भार के अधीन बीम जो मरोड़ या अक्षीय लोडिंग अनुभव को संपीड़ित, तन्य और कतरनी तनाव को प्रेरित नहीं करते हैं जो उनके लिए लागू भार के परिणामस्वरूप होता है। प्राय: गुरुत्वाकर्षण भार के तहत बीम के शीर्ष पर एक छोटे त्रिज्या चाप को घेरने के लिए बीम की मूल लंबाई को थोड़ा कम किया जाता है जिसके परिणामस्वरूप संपीड़न होता है। जबकि बीम के निचले भाग में समान मूल बीम की लंबाई को घेरने के लिए बड़ा त्रिज्या चाप थोड़ा बढ़ाया जाता है और इसलिए यह तनाव में है। विकृति के मोड जहां बीम का शीर्ष चेहरा संपीड़न में होता है जैसा कि एक ऊर्ध्वाधर भार के तहत होता है और यह शिथिल तरीके के रूप में जाना जाता है जहां शीर्ष तनाव में होता है। उदाहरण के लिए एक समर्थन पर हॉगिंग के रूप में जाना जाता है। बीम के मध्य की समान मूल लंबाई प्राय: ऊपर और नीचे के बीच आधा झुकने के रेडियल चाप के समान है और इसलिए यह न तो संपीड़न के अधीन है और न ही तनाव के तहत होती है और तटस्थ अक्ष (बीम में बिंदीदार रेखा) को परिभाषित करती है। समर्थन के ऊपर बीम कतरनी तनाव के संपर्क में है और कुछप्रबलित कंक्रीट बीम हैं जिनमें कंक्रीट पूरी तरह से स्टील टेंडन द्वारा लिए गए तन्य बलों के साथ संपीड़न में है। इन बीमों को प्रीस्ट्रेस्ड कंक्रीट बीम के रूप में जाना जाता है और लोडिंग स्थितियों के तहत अपेक्षित तनाव से अधिक संपीड़न उत्पन्न करने के लिए गढ़े जाते हैं। उच्च शक्ति वाले स्टील के टेंडन को फैलाया जाता है जबकि बीम को उनके ऊपर डाला जाता है फिर जब कंक्रीट ठीक हो जाता है, तो टेंडन धीरे-धीरे निकल जाते हैं और बीम अक्षीय भार के नीचे होता है। यह सनकी भार एक आंतरिक क्षण बनाता है और बदले में बीम की क्षमता ले जाने के क्षण को बढ़ाता है। वे प्राय: राजमार्ग पुलों पर उपयोग किए जाते हैं।

लोड-असर वाली दीवार को बदलने के लिए समानांतर स्ट्रैंड लंबर लंबर का एक किरण स्थापित किया गया

बीम के संरचनात्मक विश्लेषण के लिए प्राथमिक उपकरण यूलर -बर्नौली बीम समीकरण है। यह समीकरण सटीक रूप से पतले बीम के लोचदार व्यवहार का वर्णन करता है जहां बीम की लंबाई की तुलना में क्रॉस अनुभागीय आयाम छोटे होते हैं। अपरूपण बलों और गतिशील स्थितयो में रोटरी जड़ता के कारण विरूपण के लिए एक अलग सिद्धांत को अपनाने की आवश्यकता है। यहां अपनाया गया बीम सूत्रीकरण तिमोशेन्को का है और तुलनात्मक उदाहरण एनएएफईएमएस बेंचमार्क चैलेंज नंबर 7 में पाया जा सकता हैं।[3] बीम के विक्षेपण (इंजीनियरिंग) को निर्धारित करने के लिए अन्य गणितीय तरीकों में आभासी कार्य की विधि और ढलान विक्षेपण विधि सम्मिलित है। इंजीनियर विक्षेपण का निर्धारण करने में रुचि रखते हैं क्योंकि बीम कांच जैसी भंगुर सामग्री के साथ सीधे संपर्क में हो सकता है। सौंदर्य संबंधी कारणों से बीम विक्षेपण को भी कम किया जाता है। दिखने में सैगिंग बीम भले ही संरचनात्मक रूप से सुरक्षित हो, भद्दा है और इससे बचा जाना चाहिए। एक कठोर बीम (लोच का उच्च मापांक और क्षेत्र के उच्च दूसरे क्षण में से एक) कम विक्षेपण पैदा करता है।

बीम बलों (बीम के आंतरिक बलों और बीम समर्थन पर लगाए जाने वाले बलों) को निर्धारित करने के लिए गणितीय विधियों में " क्षण वितरण विधि ", बल या लचीलापन विधि और प्रत्यक्ष कठोरता विधि सम्मिलित है।

सामान्य आकार

प्रबलित कंक्रीट इमारतों में अधिकांश बीम में आयताकार क्रॉस अनुभाग होते हैं लेकिन बीम के लिए एक अधिक कुशल क्रॉस अनुभागI या H अनुभाग होता है जो प्राय: स्टील निर्माण में देखा जाता है। समानांतर अक्ष प्रमेय और तथ्य यह है कि अधिकांश सामग्री तटस्थ धुरी से दूर है बीम के क्षेत्र का दूसरा पल बढ़ता है जो बदले में कठोरता को बढ़ाता है।

एक I एक पुल के नीचे धातु के आकार का बीम

एक I-बीम झुकने की एक दिशा में केवल सबसे कुशल आकार है: ऊपर और नीचे प्रोफ़ाइल को एक I के रूप में देखना। यदि बीम अगल-बगल मुड़ी हुई है, तो यह एक H के रूप में कार्य करती है जहां यह कम कुशल है। 2डी में दोनों दिशाओं के लिए सबसे कुशल आकार का एक बॉक्स (एक चौकोर खोल) है। हालांकि किसी भी दिशा में झुकने के लिए सबसे कुशल आकार एक बेलनाकार खोल या ट्यूब है। यूनिडायरेक्शनल झुकने के लिए I या विस्तृत निकला हुआ किनारा बीम बेहतर है।

दक्षता का अर्थ है कि एक ही क्रॉस अनुभागीय क्षेत्र (प्रति लंबाई बीम की मात्रा) के लिए समान लोडिंग स्थितियों के अधीन बीम कम विक्षेपित करता है।

अन्य आकृतियाँ जैसे L (कोण), संरचनात्मक चैनल C (चैनल), T-बीम और डबल-T या नलियाँ का उपयोग निर्माण में भी किया जाता है जब विशेष आवश्यकताएं होती हैं।

पतली दीवारें

पतली दीवार वाली बीम एक बहुत ही उपयोगी प्रकार की बीम (संरचना) है।पतली दीवारों वाले बीम का क्रॉस अनुभाग एक बीम (संरचना) के बंद या खुले क्रॉस अनुभाग बनाने के लिए आपस में जुड़े पतले पैनलों से बना होता है। विशिष्ट बंद वर्गों में गोल, चौकोर और आयताकार ट्यूब आई-बीम, टी-बीम, एल-बीम आदि सम्मिलित हैं। पतली दीवार वाले बीम स्थित हैं क्योंकि प्रति यूनिट क्रॉस अनुभागीय क्षेत्र में उनकी झुकने वाली कठोरता ठोस क्रॉस अनुभाग जैसे छड़ या बार के लिए बहुत अधिक है। इस प्रकार न्यूनतम भार के साथ कठोर बीम प्राप्त किए जा सकते हैं। पतली दीवार वाले बीम विशेष रूप से उपयोगी होते हैं जब सामग्री एक समग्र टुकड़े टुकड़े होती है। समग्र टुकड़े टुकड़े पतली दीवार वाले बीम पर प्रथम अन्वेषक कार्य लिब्रेस्कु द्वारा किया गया था।

बीम की मरोड़ कठोरता इसके क्रॉस अनुभागीय आकार से बहुत प्रभावित होती है। खुले वर्गों के लिए जैसे कि I खंड विकृत विक्षेपण होते हैं जो यदि संयमित होते हैं, तो मरोड़ वाली कठोरता को बहुत बढ़ा देते हैं।[4]

यह भी देखें

संदर्भ

  1. Ching, Frank. A visual dictionary of architecture. New York: Van Nostrand Reinhold, 1995. 8–9. Print.
  2. The American Architect and Building News, Vol XXIII. Boston: James R. Osgood & Co. 1888. p. 159.
  3. Ramsay, Angus. "NAFEMS Benchmark Challenge Number 7" (PDF). ramsay-maunder.co.uk. Retrieved 7 May 2017.
  4. Ramsay, Angus. "The Influence and Modelling of Warping Restraint on Beams". ramsay-maunder.co.uk. Retrieved 7 May 2017.


आगे की पढाई


बाहरी कड़ियाँ