नकार: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (9 revisions imported from alpha:नकार) |
(No difference)
|
Revision as of 09:41, 1 March 2023
NOT | |
---|---|
Definition | |
Truth table | |
Logic gate | |
Normal forms | |
Disjunctive | |
Conjunctive | |
Zhegalkin polynomial | |
Post's lattices | |
0-preserving | no |
1-preserving | no |
Monotone | no |
Affine | yes |
तर्क में, निगेशन(निषेध), जिसे तार्किक पूरक भी कहा जाता है, एक संचालन है जो एक समस्या दूसरे समस्या के लिए ''not '' पर ले जाता है जिसे , या मे लिखा जाता है। इसे सामान्य रूप से सत्य के रूप में व्याख्या की जाती है असत्य है, और असत्य है जब सत्य है।[1][2] इस प्रकार निगेशन एक गैर संक्रियक तार्किक संयोजक है। इसे सामान्य रूप से, समस्या, सत्य मान, या सिमेंटिक मानों पर एक संचालन के रूप में प्रयुक्त किया जा सकता है। उत्कृष्ट तर्क में, निगेशन को सामान्य रूप से सत्यमान फलन के साथ पहचाना जाता है जो सत्य-मान को असत्यता (और इसके विपरीत) पर ले जाता है। अंतर्ज्ञानवादी तर्क में, ब्रौवर-हेटिंग-कोल्मोगोरोव व्याख्या के अनुसार, एक समस्या की उपेक्षा वह समस्या है जिसके प्रमाण का विभाजक (रेफ्यूशन) है।
परिभाषा
उत्कृष्ट निगेशन एक तार्किक मान पर एक तार्किक संचालन है, सामान्य रूप से एक समस्या का मान, जो सत्य मान उत्पन्न करता है जब उसका ऑपरेंड असत्य होता है, और जब उसका ऑपरेंड सत्य होता है तो असत्य का मान होता है। इस प्रकार यदि कथन P सत्य है, तो (उच्चारण not P ) तब असत्य होगा; और इसके विपरीत, यदि असत्य है तो P सत्य होगा।
की सत्य तालिका इस प्रकार है:
True False False True
निगेशन को अन्य तार्किक संचालन के संदर्भ में परिभाषित किया जा सकता है। उदाहरण के लिए, के रूप में परिभाषित किया जा सकता है (जहां तार्किक परिणाम है और असत्य (तर्क) है)। इसके विपरीत परिभाषित किया जा सकता है जैसा किसी समस्या के लिए Q (जहां तार्किक संयोजन है)। यहाँ विचार यह है कि कोई भी विरोधाभास असत्य है, और जबकि ये विचार उत्कृष्ट और अंतर्ज्ञानवादी तर्क दोनों में कार्य करते हैं, वे परासंगत तर्क में कार्य नहीं करते हैं, जहाँ विरोधाभास आवश्यक रूप से असत्य नहीं हैं। उत्कृष्ट तर्कशास्त्र में हमें एक अन्य सर्वसमिका भी मिलती है, को के रूप में परिभाषित किया जा सकता है जहां तार्किक वियोजन है।
बीजगणितीय रूप से, उत्कृष्ट निगेशन एक बूलियन बीजगणित (संरचना) में पूरक क्रम सिद्धांत) से अनुरूप है, और एक हेटिंग बीजगणित में छद्म पूरकता के लिए अंतर्ज्ञानवादी निगेशन है। ये बीजगणित क्रमशः उत्कृष्ट और अंतर्ज्ञानवादी तर्क के लिए बीजगणितीय तर्क (गणितीय तर्क) प्रदान करते हैं।
संकेत
एक समस्या की उपेक्षा p तर्क के विभिन्न संदर्भों और अनुप्रयोग के क्षेत्रों में अलग-अलग तरीकों से प्रलेखित किया जाता है। निम्नलिखित तालिका में इनमें से कुछ प्रकार हैं:
संकेत | प्लेनटेक्स्ट | शब्दोच्चारण |
---|---|---|
¬p | not p | |
~p | not p | |
-p | not p | |
Np | En p | |
p' |
| |
̅p |
| |
!p |
|
संकेतन Np लुकासिविक्ज़ संकेतन है।
समुच्चय सिद्धांत मे, '''' का उपयोग समुच्चय में 'not' को इंगित करने के लिए भी किया जाता है: के सभी इकाइयों का समुच्चय U है जो A के भाग नहीं हैं।
तथापि यह कैसे संकेतित या प्रतीकित हो, निगेशन की स्थिति ''नहीं है कि P, ''not that P'', या सामान्य रूप से अधिक सरल रूप में not P के रूप में पढ़ा जा सकता है।
गुण
द्विक निगेशन
उत्कृष्ट तर्क की एक प्रणाली के अंदर, द्विक निगेशन, अर्थात, एक समस्या के निगेशन का निगेशन , तार्किक रूप से समकक्ष है . प्रतीकात्मक शब्दों में व्यक्त किया जाता है। अंतर्ज्ञानवादी तर्क में, एक समस्या का तात्पर्य इसके दोहरे निगेशन से है लेकिन इसके विपरीत नहीं है। यह उत्कृष्ट और अंतर्ज्ञानवादी निगेशन के बीच एक महत्वपूर्ण अंतर को चिन्हित करता है। बीजगणितीय रूप से, उत्कृष्ट निगेशन को दो आवर्त का एक समावेशन (गणित) कहा जाता है।
हालांकि, अंतर्ज्ञानवादी तर्क में, दुर्बल समानता धारण करता है। ऐसा इसलिए है क्योंकि अंतर्ज्ञानवादी तर्क में, के लिए मात्र एक शॉर्टहैन्ड (आशुलिपि) , हमारे पास भी है। त्रिपक्षीय निगेशन के साथ उस अंतिम निहितार्थ की रचना करने का आशय है।
परिणामस्वरूप, समस्या के स्थिति में, एक कथन उत्कृष्ट रूप से सिद्ध होता है, यदि इसकी दोहरी अस्वीकृति अंतर्ज्ञानवादी रूप से सिद्ध होती है। इस परिणाम को ग्लिवेंको प्रमेय के रूप में जाना जाता है।
वितरण
डी मॉर्गन के नियम तार्किक संयोजन और तार्किक संयोजन पर वितरणात्मक गुण निगेशन का एक तरीका प्रदान करते हैं:
- , और
- .
रैखिकता
मान लीजिए तार्किक एकमात्र संचालन को निरूपित करें। बूलियन बीजगणित में, एक रेखीय फलन ऐसा होता है कि:
यदि , , सभी के लिए सम्मिलित है।
इसे व्यक्त करने का एक अन्य तरीका यह है कि प्रत्येक चर सदैव संचालन के सत्यमान में अंतर करता है, या यह कभी भी अंतर नहीं करता है। निगेशन एक रैखिक तार्किक ऑपरेटर (संकारक) है।
स्व द्वैत
बूलियन बीजगणित (तर्क) में, एक स्व-द्वैत फलन एक ऐसा फलन है जो:
सभी के लिए . निगेशन एक स्व- द्वैत तार्किक संक्रिया है।
परिमाणकों का निगेशन
प्रथम क्रम तर्क में, दो परिमाणक होते हैं, एक सार्वभौमिक परिमाणक होता है (तात्पर्य सबके लिए) और दूसरा अस्तित्वगत परिमाणक है (तात्पर्य वहाँ सम्मिलित है)। एक परिमाणक का निगेशन अन्य परिमाणक ( और ) है। उदाहरण के लिए, निर्धारक P के साथ x नश्वर (मॉर्टल) है और सभी मनुष्यों के संग्रह के रूप में x का प्रक्षेत्र है, का अर्थ है कि सभी मनुष्यों में एक व्यक्ति x नश्वर है या सभी मनुष्य नश्वर हैं। इसका निगेशन है। जिसका अर्थ है कि सभी मनुष्यों में एक व्यक्ति x सम्मिलित है जो नश्वर नहीं है, ''या कोई ऐसा सम्मिलित है जो सदैव के लिए जीवित रहता है"।
अनुमान के नियम
निगेशन के लिए नियम तैयार करने के कई समतुल्य तरीके हैं। एक प्राकृतिक परिणाम संस्थापन में उत्कृष्ट निगेशन को तैयार करने का एक सामान्य तरीका अनुमान निगेशन परिचय के प्राथमिक नियमों के रूप में लेना है (की व्युत्पत्ति से) दोनों के लिए और , अनुमान है, इस नियम को रिडक्टियो एड एब्सर्डम भी कहा जाता है), निगेशन निरसन (से और अनुमान से इस नियम को x असत्य क्वाडलिबेट भी कहा जाता है), और द्विक निगेशन निरसन (से तर्क ) एक ही तरह से अंतर्ज्ञानवादी निगेशन के लिए नियम प्राप्त करता है लेकिन द्विक निगेशन निरसन को छोड़कर प्राप्त करता है।
निगेशन परिचय में कहा गया है कि यदि से निष्कर्ष के रूप में एक असंगति निकाली जा सकती है तब स्थिति नहीं होना चाहिए (अर्थात असत्य (उत्कृष्ट रूप से) या खंडन योग्य (सामान्य ज्ञान युक्त) या आदि) है। निगेशन निरसन बताता है कि कुछ भी असंगति से होता है। कभी-कभी एक प्राथमिक असंगति चिह्न का उपयोग करके निगेशन निरसन तैयार किया जाता है इस स्थिति में नियम कहता है कि से और एक असंगति का अनुसरण करता है। द्विक निगेशन निरसन के साथ-साथ हमारे मूल रूप से तैयार किए गए नियम का अनुमान लगाया जा सकता है, अर्थात् कुछ भी असंगति से होता है।
सामान्य रूप से अंतर्ज्ञानवादी निगेशन का परिभाषित किया जाता है फिर निगेशन परिचय और असंगति निहितार्थ परिचय (सशर्त प्रमाण) और विलोपन (एक वैध, सरल तर्क और निष्कर्ष के नियम के रूप) के विशेष स्थिति हैं। इस स्थिति में एक प्राथमिक नियम के रूप में भी जोड़ा जाना चाहिए।
प्रोग्रामिंग भाषा और सामान्य भाषा
"वोट" यहाँ पुनर्प्रेषित होता है। विकिपीडिया तर्कओं में वोटों के उपयोग के लिए, विकिपीडिया देखें: पोलिंग तर्क का विकल्प नहीं है § not-वोट्स।
गणित की तरह, तार्किक कथनों के निर्माण के लिए कंप्यूटर विज्ञान में निगेशन का उपयोग किया जाता है।
if (!(r == t))
{ /*...statements executed when r does NOT equal t...*/ }
विस्मयादिबोधक चिह्न!
B, (प्रोग्रामिंग भाषा), C प्रोग्रामिंग भाषा और C-प्रेरित सिंटैक्स जैसे C ++, जावा (प्रोग्रामिंग भाषा), जावास्क्रिप्ट, पर्ल और पीएचपी वाली भाषाओं में तार्किक नहीं है। NOT
ऐल्गॉल 60, प्रारंभ का सर्व-उद्देश्यीय प्रतीकात्मक निर्देश कोड प्रोग्रामिंग भाषा, और ऐल्गॉल- या बेसिक-प्रेरित सिंटैक्स वाली भाषाओं जैसे पास्कल प्रोग्रामिंग भाषा, एडीए प्रोग्रामिंग भाषा, एफिल (प्रोग्रामिंग भाषा) और एसईईदी 7 में उपयोग किया जाने वाला संक्रियक है। कुछ भाषाएँ (C++, पर्ल, आदि) निगेशन के लिए एक से अधिक संक्रियक प्रदान करती हैं। कुछ भाषाएँ जैसे पीएल/एल और रैटफोर ¬
निगेशन के लिए उपयोग करती हैं। अधिकांश आधुनिक भाषाएँ if (!(r == t))
को if (r != t)
उपरोक्त कथन को कम करने की स्वीकृति देती हैं जो कभी-कभी स्वीकृति देता है कि जब संकलक/दुभाषिया इसे तीव्रता से प्रोग्राम को अनुकूलित करने में सक्षम नहीं होता है।
कंप्यूटर विज्ञान में बिटवाइज़ निगेशन भी है। यह दिया गया मान लेता है और सभी बाइनरी अंक प्रणाली 1s को 0s और 0s को 1s में बदल देता है। बिटवाइज़ संचालन देखें। इसका उपयोग प्रायः हस्ताक्षरित संख्या प्रतिनिधित्व बनाने के लिए किया जाता है | एक पूरक या~C
या C ++ और दो के पूरक में ( सरलीकृत-
या ऋणात्मक चिह्न क्योंकि यह संख्या के अंकगणितीय ऋणात्मक मान को लेने के समान है) क्योंकि यह मूल रूप से मान के विपरीत (ऋणात्मक मान समतुल्य) या गणितीय पूरक बनाता है (जहां दोनों मान एक साथ जोड़े जाते हैं वे एक संपूर्ण बनाते हैं)।
किसी दिए गए पूर्णांक का पूर्ण (धनात्मक समतुल्य) मान प्राप्त करने के लिए निम्नलिखित -
के रूप में काम करेगा जो इसे ऋणात्मक से धनात्मक में परिवर्तित कर देता है क्योंकिx < 0
सत्य सत्य है)।
unsigned int abs(int x) { if (x < 0) return -x; else return x; }
तार्किक निगेशन प्रदर्शित करने के लिए:
unsigned int abs(int x) { if (!(x < 0)) return x; else return -x; }
स्थिति को प्रतिलोमक और परिणामों को प्रतिवर्ती से कोड उत्पन्न होता है जो तार्किक रूप से मूल कोड के समतुल्य होता है, अर्थात किसी भी इनपुट के लिए समान परिणाम होंगे (ध्यान दें कि उपयोग किए गए कंपाइलर के आधार पर, कंप्यूटर द्वारा किए गए वास्तविक निर्देश भिन्न हो सकते हैं)।
यह कन्वेंशन कभी-कभी साधारण लिखित भाषा में कंप्यूटर से संबंधित अपरिष्कृत भाषा NOT सामने आता है। उदाहरण के लिए, चरण !voting
का तात्पर्य not वोटिंग है। एक अन्य उदाहरण !clue
जिसका उपयोग नो-क्लू या क्लूलेस के पर्याय के रूप में किया जाता है।[3][4]
कृपके सिमेन्टिक
कृपके सिमेन्टिक में जहां सूत्रों के सिमेन्टिक मान संभावित विश्व के समुच्चय हैं, समुच्चय-सैद्धांतिक पूरकता के अर्थ में निगेशन को लिया जा सकता है[citation needed] (अधिक के लिए संभावित विश्व सिमेन्टिक भी देखें)।
यह भी देखें
- पुष्टि और निगेशन (व्याकरणिक ध्रुवीयता)
- अम्फेक
- एपोफैसिस
- बाइनरी विपक्ष
- बिटवाइज़ NOT
- विरोधाभास
- चक्रीय निगेशन
- तार्किक संयोजन
- तार्किक विच्छेदन
- असफलता के रूप में निगेशन
- गेट NOT
- प्लेटो बेयर्ड
- वर्ग का विरोध
- सत्य फलन
- सत्य तालिका
संदर्भ
- ↑ Weisstein, Eric W. "नकार". mathworld.wolfram.com (in English). Retrieved 2020-09-02.
- ↑ "Logic and Mathematical Statements - Worked Examples". www.math.toronto.edu. Retrieved 2020-09-02.
- ↑ Raymond, Eric and Steele, Guy. The New Hacker's Dictionary, p. 18 (MIT Press 1996).
- ↑ Munat, Judith. Lexical Creativity, Texts and Context, p. 148 (John Benjamins Publishing, 2007).
अग्रिम पठन
- Gabbay, Dov, and Wansing, Heinrich, eds., 1999. What is Negation?, Kluwer.
- Horn, L., 2001. A Natural History of Negation, University of Chicago Press.
- G. H. von Wright, 1953–59, "On the Logic of Negation", Commentationes Physico-Mathematicae 22.
- Wansing, Heinrich, 2001, "Negation", in Goble, Lou, ed., The Blackwell Guide to Philosophical Logic, Blackwell.
- Tettamanti, Marco; Manenti, Rosa; Della Rosa, Pasquale A.; Falini, Andrea; Perani, Daniela; Cappa, Stefano F.; Moro, Andrea (2008). "Negation in the brain: Modulating action representation". NeuroImage. 43 (2): 358–367. doi:10.1016/j.neuroimage.2008.08.004. PMID 18771737. S2CID 17658822.
बाहरी संबंध
- Horn, Laurence R.; Wansing, Heinrich. "Negation". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy.
- "Negation", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- NOT, on MathWorld
- Tables of Truth of composite clauses
- "Table of truth for a NOT clause applied to an END sentence". Archived from the original on 1 March 2000.
- "NOT clause of an END sentence". Archived from the original on 1 March 2000.
- "NOT clause of an OR sentence". Archived from the original on 17 January 2000.
- "NOT clause of an IF...THEN period". Archived from the original on 1 March 2000.