समुच्चयों का बीजगणित: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
{{about|सामान्य रूप से समुच्चय संचालन के बीजगणितीय गुण|समुच्चय का एक बूलीय बीजगणित|समुच्चयो का क्षेत्र}}
{{about|सामान्य रूप से समुच्चय संचालन के बीजगणितीय गुण|समुच्चय का एक बूलीय बीजगणित|समुच्चयो का क्षेत्र}}


गणित में, समुच्चयों का बीजगणित, समुच्चयों के क्षेत्र की [[गणितीय संरचना]] के साथ भ्रमित नहीं होना चाहिए। ''एक'' समुच्चयों का बीजगणित, समुच्चय (गणित) के गुणों और नियमों को परिभाषित करता है, सेट-सैद्धांतिक [[संक्रिया (गणित)]] [[संघ (सेट सिद्धांत)]], प्रतिच्छेदन (सेट सिद्धांत), और [[पूरक (सेट सिद्धांत)]] और सेट [[समानता (गणित)]] और सेट [[सबसेट]] के [[द्विआधारी संबंध]]। यह इन परिचालनों और संबंधों को शामिल करते हुए अभिव्यक्तियों के मूल्यांकन और गणना करने के लिए व्यवस्थित प्रक्रियाएं भी प्रदान करता है।
[[गणित]] में, समुच्चयों का बीजगणित, [[समुच्चयों के बीजगणित]] की [[गणितीय संरचना]] के साथ भ्रमित नहीं होने के लिए, [[समुच्चय]] के गुणों और नियमों को परिभाषित करता है, [[संघ (सेट सिद्धांत)|समुच्च (समुच्चय सिद्धांत)]], [[प्रतिच्छेदन]] (समुच्चय सिद्धांत), और [[पूरक (सेट सिद्धांत)|पूरकीकरण]] के समुच्चय-सैद्धांतिक प्रचालन, और [[समानता]] और [[संबंधों]] को स्थापित करता है। यह इन परिचालनों और संबंधों को सम्मिलित करने वाले व्यंजको के मूल्यांकन और गणना के लिए व्यवस्थित प्रक्रियाएं भी प्रदान करता है।


सेट-थ्योरिटिक ऑपरेशंस के तहत बंद किए गए सेट का कोई भी सेट एक [[बूलियन बीजगणित (संरचना)]] बनाता है, जिसमें शामिल होने वाला ऑपरेटर 'यूनियन' होता है, मीट ऑपरेटर 'चौराहा' होता है, पूरक ऑपरेटर 'सेट पूरक' होता है, निचला होना <math>\varnothing</math> और सबसे ऊपर [[ब्रह्मांड (गणित)]] विचाराधीन है।
समुच्चय-थ्योरिटिक ऑपरेशंस के तहत बंद किए गए समुच्चय का कोई भी समुच्चय एक [[बूलियन बीजगणित (संरचना)]] बनाता है, जिसमें शामिल होने वाला ऑपरेटर 'यूनियन' होता है, मीट ऑपरेटर 'चौराहा' होता है, पूरक ऑपरेटर 'समुच्चय पूरक' होता है, निचला होना <math>\varnothing</math> और सबसे ऊपर [[ब्रह्मांड (गणित)]] विचाराधीन है।


== मूल बातें ==
== मूल बातें ==


समुच्चयों का बीजगणित संख्याओं के बीजगणित का समुच्चय-सैद्धांतिक अनुरूप है। जिस प्रकार अंकगणितीय योग और गुणन साहचर्यता और [[क्रमविनिमेयता]] हैं, उसी प्रकार सेट संघ और प्रतिच्छेदन हैं; जिस तरह अंकगणितीय संबंध कम या बराबर होता है, वह [[प्रतिवर्त संबंध]], [[एंटीसिमेट्रिक संबंध]] और सकर्मक रिलेशन होता है, उसी तरह उपसमुच्चय का सेट रिलेशन भी होता है।
समुच्चयों का बीजगणित संख्याओं के बीजगणित का समुच्चय-सैद्धांतिक अनुरूप है। जिस प्रकार अंकगणितीय योग और गुणन साहचर्यता और [[क्रमविनिमेयता]] हैं, उसी प्रकार समुच्चय संघ और प्रतिच्छेदन हैं; जिस तरह अंकगणितीय संबंध कम या बराबर होता है, वह [[प्रतिवर्त संबंध]], [[एंटीसिमेट्रिक संबंध]] और सकर्मक रिलेशन होता है, उसी तरह उपसमुच्चय का समुच्चय रिलेशन भी होता है।


यह संघ, प्रतिच्छेदन और पूरकता, और समानता और समावेश के संबंधों के सेट-सैद्धांतिक संचालन का बीजगणित है। समुच्चयों के बुनियादी परिचय के लिए समुच्चय (गणित) पर लेख देखें, अधिक विस्तृत विवरण के लिए भोली समुच्चय सिद्धांत देखें, और पूर्ण कठोर [[स्वयंसिद्ध]] उपचार के लिए स्वयंसिद्ध समुच्चय सिद्धांत देखें।
यह संघ, प्रतिच्छेदन और पूरकता, और समानता और समावेश के संबंधों के समुच्चय-सैद्धांतिक संचालन का बीजगणित है। समुच्चयों के बुनियादी परिचय के लिए समुच्चय (गणित) पर लेख देखें, अधिक विस्तृत विवरण के लिए भोली समुच्चय सिद्धांत देखें, और पूर्ण कठोर [[स्वयंसिद्ध]] उपचार के लिए स्वयंसिद्ध समुच्चय सिद्धांत देखें।


== सेट बीजगणित == के मौलिक गुण<!-- This section is linked from [[Subset]] -->
== समुच्चय बीजगणित == के मौलिक गुण<!-- This section is linked from [[Subset]] -->
सेट यूनियन (सेट थ्योरी) के [[बाइनरी ऑपरेशन]] (<math>\cup</math>) और चौराहा (सेट सिद्धांत) (<math>\cap</math>) कई पहचानों (गणित) को संतुष्ट करते हैं। इनमें से कई पहचानों या कानूनों के सुस्थापित नाम हैं।
समुच्चय यूनियन (समुच्चय थ्योरी) के [[बाइनरी ऑपरेशन]] (<math>\cup</math>) और चौराहा (समुच्चय सिद्धांत) (<math>\cap</math>) कई पहचानों (गणित) को संतुष्ट करते हैं। इनमें से कई पहचानों या कानूनों के सुस्थापित नाम हैं।


:[[क्रमचयी गुणधर्म]]:
:[[क्रमचयी गुणधर्म]]:
Line 26: Line 26:
समुच्चयों के मिलन और प्रतिच्छेदन को संख्याओं के जोड़ और गुणन के अनुरूप देखा जा सकता है। जोड़ और गुणा की तरह, संघ और चौराहे के संचालन क्रमविनिमेय और साहचर्य होते हैं, और चौराहे संघ पर वितरित होते हैं। हालाँकि, जोड़ और गुणा के विपरीत, संघ भी प्रतिच्छेदन पर वितरित करता है।
समुच्चयों के मिलन और प्रतिच्छेदन को संख्याओं के जोड़ और गुणन के अनुरूप देखा जा सकता है। जोड़ और गुणा की तरह, संघ और चौराहे के संचालन क्रमविनिमेय और साहचर्य होते हैं, और चौराहे संघ पर वितरित होते हैं। हालाँकि, जोड़ और गुणा के विपरीत, संघ भी प्रतिच्छेदन पर वितरित करता है।


गुणों के दो अतिरिक्त जोड़े में विशेष सेट शामिल होते हैं जिन्हें [[खाली सेट]] Ø और ब्रह्मांड (गणित) कहा जाता है <math>U</math>; एक साथ पूरक (सेट सिद्धांत) ऑपरेटर के साथ (<math>A^C</math> के पूरक को दर्शाता है <math>A</math>. इसे इस रूप में भी लिखा जा सकता है <math>A'</math>, एक प्रमुख के रूप में पढ़ें)। खाली सेट में कोई सदस्य नहीं है, और ब्रह्मांड सेट में सभी संभावित सदस्य हैं (एक विशेष संदर्भ में)।
गुणों के दो अतिरिक्त जोड़े में विशेष समुच्चय शामिल होते हैं जिन्हें [[खाली सेट|खाली समुच्चय]] Ø और ब्रह्मांड (गणित) कहा जाता है <math>U</math>; एक साथ पूरक (समुच्चय सिद्धांत) ऑपरेटर के साथ (<math>A^C</math> के पूरक को दर्शाता है <math>A</math>. इसे इस रूप में भी लिखा जा सकता है <math>A'</math>, एक प्रमुख के रूप में पढ़ें)। खाली समुच्चय में कोई सदस्य नहीं है, और ब्रह्मांड समुच्चय में सभी संभावित सदस्य हैं (एक विशेष संदर्भ में)।


:पहचान :
:पहचान :
Line 36: Line 36:
पहचान अभिव्यक्तियां (कम्यूटेटिव अभिव्यक्तियों के साथ) कहती हैं कि, जैसे 0 और 1 जोड़ और गुणा के लिए, Ø और यू क्रमशः संघ और चौराहे के लिए [[पहचान तत्व]] हैं।
पहचान अभिव्यक्तियां (कम्यूटेटिव अभिव्यक्तियों के साथ) कहती हैं कि, जैसे 0 और 1 जोड़ और गुणा के लिए, Ø और यू क्रमशः संघ और चौराहे के लिए [[पहचान तत्व]] हैं।


जोड़ और गुणा के विपरीत, संघ और प्रतिच्छेदन में व्युत्क्रम तत्व नहीं होते हैं। हालांकि पूरक कानून सेट पूरकता के कुछ उलटे-जैसे [[एकात्मक ऑपरेशन]] के मूलभूत गुणों को देते हैं।
जोड़ और गुणा के विपरीत, संघ और प्रतिच्छेदन में व्युत्क्रम तत्व नहीं होते हैं। हालांकि पूरक कानून समुच्चय पूरकता के कुछ उलटे-जैसे [[एकात्मक ऑपरेशन]] के मूलभूत गुणों को देते हैं।


सूत्रों के पिछले पांच जोड़े - क्रमविनिमेय, साहचर्य, वितरण, पहचान और पूरक सूत्र - सभी सेट बीजगणित को शामिल करते हैं, इस अर्थ में कि सेट के बीजगणित में प्रत्येक मान्य प्रस्ताव उनसे प्राप्त किया जा सकता है।
सूत्रों के पिछले पांच जोड़े - क्रमविनिमेय, साहचर्य, वितरण, पहचान और पूरक सूत्र - सभी समुच्चय बीजगणित को शामिल करते हैं, इस अर्थ में कि समुच्चय के बीजगणित में प्रत्येक मान्य प्रस्ताव उनसे प्राप्त किया जा सकता है।


ध्यान दें कि यदि पूरक सूत्र नियम से कमजोर हैं <math> (A^C)^C = A </math>, तो यह बिल्कुल प्रस्तावात्मक [[रैखिक तर्क]] का बीजगणित है{{clarify|reason=Explain which set operator corresponds to which linear-logic operator. Linear logic seems to have much more operators than a boolean algebra, but the section 'Algebraic semantics' of the 'linear logic' article is still unwritten.|date=August 2013}}.
ध्यान दें कि यदि पूरक सूत्र नियम से कमजोर हैं <math> (A^C)^C = A </math>, तो यह बिल्कुल प्रस्तावात्मक [[रैखिक तर्क]] का बीजगणित है{{clarify|reason=Explain which set operator corresponds to which linear-logic operator. Linear logic seems to have much more operators than a boolean algebra, but the section 'Algebraic semantics' of the 'linear logic' article is still unwritten.|date=August 2013}}.
Line 47: Line 47:
ऊपर बताई गई प्रत्येक सर्वसमिका, सर्वसमिकाओं की एक जोड़ी में से एक है, जैसे कि प्रत्येक को ∪ और ∩, और Ø और U को बदलकर दूसरे में परिवर्तित किया जा सकता है।
ऊपर बताई गई प्रत्येक सर्वसमिका, सर्वसमिकाओं की एक जोड़ी में से एक है, जैसे कि प्रत्येक को ∪ और ∩, और Ø और U को बदलकर दूसरे में परिवर्तित किया जा सकता है।


ये सेट बीजगणित की एक अत्यंत महत्वपूर्ण और शक्तिशाली संपत्ति के उदाहरण हैं, अर्थात्, सेट के लिए द्वैत का सिद्धांत, जो इस बात पर जोर देता है कि सेट के बारे में किसी भी सच्चे कथन के लिए, यूनियनों और चौराहों को बदलने, U और Ø को बदलने और समावेशन को उलटने से प्राप्त होने वाला दोहरा बयान भी सच है। एक कथन को स्व-द्वैत कहा जाता है यदि यह अपने स्वयं के द्वैत के बराबर है।
ये समुच्चय बीजगणित की एक अत्यंत महत्वपूर्ण और शक्तिशाली संपत्ति के उदाहरण हैं, अर्थात्, समुच्चय के लिए द्वैत का सिद्धांत, जो इस बात पर जोर देता है कि समुच्चय के बारे में किसी भी सच्चे कथन के लिए, यूनियनों और चौराहों को बदलने, U और Ø को बदलने और समावेशन को उलटने से प्राप्त होने वाला दोहरा बयान भी सच है। एक कथन को स्व-द्वैत कहा जाता है यदि यह अपने स्वयं के द्वैत के बराबर है।


== यूनियनों और चौराहों के लिए कुछ अतिरिक्त कानून ==
== यूनियनों और चौराहों के लिए कुछ अतिरिक्त कानून ==


निम्नलिखित प्रस्ताव सेट बीजगणित के छह और महत्वपूर्ण कानूनों को बताता है, जिसमें यूनियनों और चौराहे शामिल हैं।
निम्नलिखित प्रस्ताव समुच्चय बीजगणित के छह और महत्वपूर्ण कानूनों को बताता है, जिसमें यूनियनों और चौराहे शामिल हैं।


प्रस्ताव 3: ब्रह्मांड समुच्चय U के किसी भी उपसमुच्चय ''A'' और ''B'' के लिए, निम्नलिखित सर्वसमिकाएं मान्य हैं:
प्रस्ताव 3: ब्रह्मांड समुच्चय U के किसी भी उपसमुच्चय ''A'' और ''B'' के लिए, निम्नलिखित सर्वसमिकाएं मान्य हैं:
Line 113: Line 113:
|by the identity law for intersection
|by the identity law for intersection
|}
|}
प्रतिच्छेदन को सेट अंतर के रूप में व्यक्त किया जा सकता है:
प्रतिच्छेदन को समुच्चय अंतर के रूप में व्यक्त किया जा सकता है:


<math>A \cap B = A \setminus (A \setminus B) </math>
<math>A \cap B = A \setminus (A \setminus B) </math>
Line 120: Line 120:
== पूरक के लिए कुछ अतिरिक्त कानून ==
== पूरक के लिए कुछ अतिरिक्त कानून ==


निम्नलिखित प्रस्ताव सेट बीजगणित के पांच और महत्वपूर्ण कानूनों को बताता है, जिसमें पूरक शामिल हैं।
निम्नलिखित प्रस्ताव समुच्चय बीजगणित के पांच और महत्वपूर्ण कानूनों को बताता है, जिसमें पूरक शामिल हैं।


प्रस्ताव 4: मान लीजिए कि ''A'' और ''B'' ब्रह्मांड U के उपसमुच्चय हैं, तो:
प्रस्ताव 4: मान लीजिए कि ''A'' और ''B'' ब्रह्मांड U के उपसमुच्चय हैं, तो:
Line 128: Line 128:
:दोहरा पूरक या समावेश (गणित) कानून:
:दोहरा पूरक या समावेश (गणित) कानून:
::*<math>{(A^{C})}^{C} = A</math>
::*<math>{(A^{C})}^{C} = A</math>
: ब्रह्मांड सेट और खाली सेट के लिए पूरक कानून:
: ब्रह्मांड समुच्चय और खाली समुच्चय के लिए पूरक कानून:
::*<math>\varnothing^C = U</math>
::*<math>\varnothing^C = U</math>
::*<math>U^C = \varnothing</math>
::*<math>U^C = \varnothing</math>
Line 142: Line 142:
== समावेशन का बीजगणित ==
== समावेशन का बीजगणित ==


निम्नलिखित प्रस्ताव कहता है कि उपसमुच्चय, जो कि एक सेट का दूसरे का उपसमुच्चय होने का द्विआधारी संबंध है, एक आंशिक क्रम है।
निम्नलिखित प्रस्ताव कहता है कि उपसमुच्चय, जो कि एक समुच्चय का दूसरे का उपसमुच्चय होने का द्विआधारी संबंध है, एक आंशिक क्रम है।


प्रस्ताव 6: यदि ''ए'', ''बी'' और ''सी'' समुच्चय हैं तो निम्नलिखित होल्ड करता है:
प्रस्ताव 6: यदि ''ए'', ''बी'' और ''सी'' समुच्चय हैं तो निम्नलिखित होल्ड करता है:
Line 152: Line 152:
: सकर्मक संबंध:
: सकर्मक संबंध:
::*अगर <math>A \subseteq B</math> और <math>B \subseteq C</math>, तब <math>A \subseteq C</math>
::*अगर <math>A \subseteq B</math> और <math>B \subseteq C</math>, तब <math>A \subseteq C</math>
निम्नलिखित प्रस्ताव कहता है कि किसी भी सेट एस के लिए, समावेश द्वारा आदेशित एस का [[सत्ता स्थापित]], एक [[जाली (आदेश)]] है, और इसलिए उपरोक्त वितरण और पूरक कानूनों के साथ, यह दर्शाता है कि यह एक बूलियन बीजगणित (संरचना) है।
निम्नलिखित प्रस्ताव कहता है कि किसी भी समुच्चय एस के लिए, समावेश द्वारा आदेशित एस का [[सत्ता स्थापित]], एक [[जाली (आदेश)]] है, और इसलिए उपरोक्त वितरण और पूरक कानूनों के साथ, यह दर्शाता है कि यह एक बूलियन बीजगणित (संरचना) है।


'प्रस्ताव 7': यदि A, B और C एक समुच्चय S के उपसमुच्चय हैं तो निम्नलिखित धारण करता है:
'प्रस्ताव 7': यदि A, B और C एक समुच्चय S के उपसमुच्चय हैं तो निम्नलिखित धारण करता है:
Line 166: Line 166:
निम्नलिखित प्रस्ताव कहता है कि कथन <math>A \subseteq B</math> यूनियनों, चौराहों और पूरक से जुड़े कई अन्य बयानों के बराबर है।
निम्नलिखित प्रस्ताव कहता है कि कथन <math>A \subseteq B</math> यूनियनों, चौराहों और पूरक से जुड़े कई अन्य बयानों के बराबर है।


प्रस्ताव 8: किसी भी दो सेट ''ए'' और ''बी'' के लिए, निम्नलिखित समतुल्य हैं:
प्रस्ताव 8: किसी भी दो समुच्चय ''ए'' और ''बी'' के लिए, निम्नलिखित समतुल्य हैं:
:*<math>A \subseteq B</math>
:*<math>A \subseteq B</math>
:*<math>A \cap B = A</math>
:*<math>A \cap B = A</math>
Line 172: Line 172:
:*<math>A \setminus B = \varnothing</math>
:*<math>A \setminus B = \varnothing</math>
:*<math>B^C \subseteq A^C</math>
:*<math>B^C \subseteq A^C</math>
उपरोक्त प्रस्ताव से पता चलता है कि सेट समावेशन के संबंध को सेट यूनियन या सेट इंटरसेक्शन के संचालन में से किसी एक द्वारा वर्णित किया जा सकता है, जिसका अर्थ है कि सेट समावेशन की धारणा स्वयंसिद्ध रूप से अनावश्यक है।
उपरोक्त प्रस्ताव से पता चलता है कि समुच्चय समावेशन के संबंध को समुच्चय यूनियन या समुच्चय इंटरसेक्शन के संचालन में से किसी एक द्वारा वर्णित किया जा सकता है, जिसका अर्थ है कि समुच्चय समावेशन की धारणा स्वयंसिद्ध रूप से अनावश्यक है।


== सापेक्ष पूरक का बीजगणित ==
== सापेक्ष पूरक का बीजगणित ==


निम्नलिखित प्रस्ताव पूरक (सेट सिद्धांत) और सेट-सैद्धांतिक मतभेदों से संबंधित कई पहचानों को सूचीबद्ध करता है।
निम्नलिखित प्रस्ताव पूरक (समुच्चय सिद्धांत) और समुच्चय-सैद्धांतिक मतभेदों से संबंधित कई पहचानों को सूचीबद्ध करता है।


प्रस्ताव 9: किसी भी ब्रह्मांड यू और यू के उपसमुच्चय ''ए'', ''बी'' और ''सी'' के लिए, निम्नलिखित सर्वसमिकाएँ हैं:
प्रस्ताव 9: किसी भी ब्रह्मांड यू और यू के उपसमुच्चय ''ए'', ''बी'' और ''सी'' के लिए, निम्नलिखित सर्वसमिकाएँ हैं:
Line 198: Line 198:


* σ-बीजगणित समुच्चयों का एक बीजगणित है, जिसे गिनती के अनंत संक्रियाओं को शामिल करने के लिए पूरा किया गया है।
* σ-बीजगणित समुच्चयों का एक बीजगणित है, जिसे गिनती के अनंत संक्रियाओं को शामिल करने के लिए पूरा किया गया है।
* स्वयंसिद्ध सेट सिद्धांत
* स्वयंसिद्ध समुच्चय सिद्धांत
* छवि (गणित) # गुण
* छवि (गणित) # गुण
* [[सेट का क्षेत्र]]
* [[सेट का क्षेत्र|समुच्चय का क्षेत्र]]
* निर्धारित पहचान और संबंधों की सूची
* निर्धारित पहचान और संबंधों की सूची
* भोले सेट सिद्धांत
* भोले समुच्चय सिद्धांत
* सेट (गणित)
* समुच्चय (गणित)
* टोपोलॉजिकल स्पेस # परिभाषाएँ - का एक सबसेट <math>\wp(X)</math>, का पावर सेट <math>X</math>मनमाना संघ, परिमित चौराहा और युक्त के संबंध में बंद <math>\emptyset</math> और <math>X</math>.
* टोपोलॉजिकल स्पेस # परिभाषाएँ - का एक सबसमुच्चय <math>\wp(X)</math>, का पावर समुच्चय <math>X</math>मनमाना संघ, परिमित चौराहा और युक्त के संबंध में बंद <math>\emptyset</math> और <math>X</math>.


==संदर्भ==
==संदर्भ==

Revision as of 21:52, 21 February 2023

गणित में, समुच्चयों का बीजगणित, समुच्चयों के बीजगणित की गणितीय संरचना के साथ भ्रमित नहीं होने के लिए, समुच्चय के गुणों और नियमों को परिभाषित करता है, समुच्च (समुच्चय सिद्धांत), प्रतिच्छेदन (समुच्चय सिद्धांत), और पूरकीकरण के समुच्चय-सैद्धांतिक प्रचालन, और समानता और संबंधों को स्थापित करता है। यह इन परिचालनों और संबंधों को सम्मिलित करने वाले व्यंजको के मूल्यांकन और गणना के लिए व्यवस्थित प्रक्रियाएं भी प्रदान करता है।

समुच्चय-थ्योरिटिक ऑपरेशंस के तहत बंद किए गए समुच्चय का कोई भी समुच्चय एक बूलियन बीजगणित (संरचना) बनाता है, जिसमें शामिल होने वाला ऑपरेटर 'यूनियन' होता है, मीट ऑपरेटर 'चौराहा' होता है, पूरक ऑपरेटर 'समुच्चय पूरक' होता है, निचला होना और सबसे ऊपर ब्रह्मांड (गणित) विचाराधीन है।

मूल बातें

समुच्चयों का बीजगणित संख्याओं के बीजगणित का समुच्चय-सैद्धांतिक अनुरूप है। जिस प्रकार अंकगणितीय योग और गुणन साहचर्यता और क्रमविनिमेयता हैं, उसी प्रकार समुच्चय संघ और प्रतिच्छेदन हैं; जिस तरह अंकगणितीय संबंध कम या बराबर होता है, वह प्रतिवर्त संबंध, एंटीसिमेट्रिक संबंध और सकर्मक रिलेशन होता है, उसी तरह उपसमुच्चय का समुच्चय रिलेशन भी होता है।

यह संघ, प्रतिच्छेदन और पूरकता, और समानता और समावेश के संबंधों के समुच्चय-सैद्धांतिक संचालन का बीजगणित है। समुच्चयों के बुनियादी परिचय के लिए समुच्चय (गणित) पर लेख देखें, अधिक विस्तृत विवरण के लिए भोली समुच्चय सिद्धांत देखें, और पूर्ण कठोर स्वयंसिद्ध उपचार के लिए स्वयंसिद्ध समुच्चय सिद्धांत देखें।

== समुच्चय बीजगणित == के मौलिक गुण समुच्चय यूनियन (समुच्चय थ्योरी) के बाइनरी ऑपरेशन () और चौराहा (समुच्चय सिद्धांत) () कई पहचानों (गणित) को संतुष्ट करते हैं। इनमें से कई पहचानों या कानूनों के सुस्थापित नाम हैं।

क्रमचयी गुणधर्म:
संबंधी संपत्ति:
वितरण की जाने वाली संपत्ति:

समुच्चयों के मिलन और प्रतिच्छेदन को संख्याओं के जोड़ और गुणन के अनुरूप देखा जा सकता है। जोड़ और गुणा की तरह, संघ और चौराहे के संचालन क्रमविनिमेय और साहचर्य होते हैं, और चौराहे संघ पर वितरित होते हैं। हालाँकि, जोड़ और गुणा के विपरीत, संघ भी प्रतिच्छेदन पर वितरित करता है।

गुणों के दो अतिरिक्त जोड़े में विशेष समुच्चय शामिल होते हैं जिन्हें खाली समुच्चय Ø और ब्रह्मांड (गणित) कहा जाता है ; एक साथ पूरक (समुच्चय सिद्धांत) ऑपरेटर के साथ ( के पूरक को दर्शाता है . इसे इस रूप में भी लिखा जा सकता है , एक प्रमुख के रूप में पढ़ें)। खाली समुच्चय में कोई सदस्य नहीं है, और ब्रह्मांड समुच्चय में सभी संभावित सदस्य हैं (एक विशेष संदर्भ में)।

पहचान :
पूरक :

पहचान अभिव्यक्तियां (कम्यूटेटिव अभिव्यक्तियों के साथ) कहती हैं कि, जैसे 0 और 1 जोड़ और गुणा के लिए, Ø और यू क्रमशः संघ और चौराहे के लिए पहचान तत्व हैं।

जोड़ और गुणा के विपरीत, संघ और प्रतिच्छेदन में व्युत्क्रम तत्व नहीं होते हैं। हालांकि पूरक कानून समुच्चय पूरकता के कुछ उलटे-जैसे एकात्मक ऑपरेशन के मूलभूत गुणों को देते हैं।

सूत्रों के पिछले पांच जोड़े - क्रमविनिमेय, साहचर्य, वितरण, पहचान और पूरक सूत्र - सभी समुच्चय बीजगणित को शामिल करते हैं, इस अर्थ में कि समुच्चय के बीजगणित में प्रत्येक मान्य प्रस्ताव उनसे प्राप्त किया जा सकता है।

ध्यान दें कि यदि पूरक सूत्र नियम से कमजोर हैं , तो यह बिल्कुल प्रस्तावात्मक रैखिक तर्क का बीजगणित है[clarification needed].

द्वैत का सिद्धांत

ऊपर बताई गई प्रत्येक सर्वसमिका, सर्वसमिकाओं की एक जोड़ी में से एक है, जैसे कि प्रत्येक को ∪ और ∩, और Ø और U को बदलकर दूसरे में परिवर्तित किया जा सकता है।

ये समुच्चय बीजगणित की एक अत्यंत महत्वपूर्ण और शक्तिशाली संपत्ति के उदाहरण हैं, अर्थात्, समुच्चय के लिए द्वैत का सिद्धांत, जो इस बात पर जोर देता है कि समुच्चय के बारे में किसी भी सच्चे कथन के लिए, यूनियनों और चौराहों को बदलने, U और Ø को बदलने और समावेशन को उलटने से प्राप्त होने वाला दोहरा बयान भी सच है। एक कथन को स्व-द्वैत कहा जाता है यदि यह अपने स्वयं के द्वैत के बराबर है।

यूनियनों और चौराहों के लिए कुछ अतिरिक्त कानून

निम्नलिखित प्रस्ताव समुच्चय बीजगणित के छह और महत्वपूर्ण कानूनों को बताता है, जिसमें यूनियनों और चौराहे शामिल हैं।

प्रस्ताव 3: ब्रह्मांड समुच्चय U के किसी भी उपसमुच्चय A और B के लिए, निम्नलिखित सर्वसमिकाएं मान्य हैं:

उदास कानून:
वर्चस्व कानून:
अवशोषण कानून:

जैसा कि ऊपर उल्लेख किया गया है, प्रस्ताव 3 में वर्णित प्रत्येक कानून ऊपर बताए गए कानूनों के पांच मौलिक जोड़े से प्राप्त किया जा सकता है. एक उदाहरण के रूप में, संघ के लिए निर्बल नियम के लिए एक प्रमाण नीचे दिया गया है।

सबूत:

by the identity law of intersection
by the complement law for union
by the distributive law of union over intersection
by the complement law for intersection
by the identity law for union

निम्नलिखित प्रमाण यह दर्शाता है कि उपरोक्त प्रमाण का द्वैत संघ के लिए आदर्श नियम के द्वैत का प्रमाण है, अर्थात् प्रतिच्छेदन के लिए उदासीन नियम।

सबूत:

by the identity law for union
by the complement law for intersection
by the distributive law of intersection over union
by the complement law for union
by the identity law for intersection

प्रतिच्छेदन को समुच्चय अंतर के रूप में व्यक्त किया जा सकता है:


पूरक के लिए कुछ अतिरिक्त कानून

निम्नलिखित प्रस्ताव समुच्चय बीजगणित के पांच और महत्वपूर्ण कानूनों को बताता है, जिसमें पूरक शामिल हैं।

प्रस्ताव 4: मान लीजिए कि A और B ब्रह्मांड U के उपसमुच्चय हैं, तो:

डी मॉर्गन के कानून:
दोहरा पूरक या समावेश (गणित) कानून:
ब्रह्मांड समुच्चय और खाली समुच्चय के लिए पूरक कानून:

ध्यान दें कि दोहरा पूरक नियम स्व-द्वैत है।

अगला प्रस्ताव, जो स्व-द्वैत भी है, कहता है कि एक समुच्चय का पूरक ही एकमात्र ऐसा समुच्चय है जो पूरक नियमों को संतुष्ट करता है। दूसरे शब्दों में, पूरकता की विशेषता पूरक कानूनों द्वारा होती है।

प्रस्ताव 5: मान लें कि A और B ब्रह्मांड U के उपसमुच्चय हैं, तो:

पूरक की विशिष्टता:
  • अगर , और , तब


समावेशन का बीजगणित

निम्नलिखित प्रस्ताव कहता है कि उपसमुच्चय, जो कि एक समुच्चय का दूसरे का उपसमुच्चय होने का द्विआधारी संबंध है, एक आंशिक क्रम है।

प्रस्ताव 6: यदि , बी और सी समुच्चय हैं तो निम्नलिखित होल्ड करता है:

प्रतिवर्त संबंध:
विषम संबंध:
  • और अगर और केवल अगर
सकर्मक संबंध:
  • अगर और , तब

निम्नलिखित प्रस्ताव कहता है कि किसी भी समुच्चय एस के लिए, समावेश द्वारा आदेशित एस का सत्ता स्थापित, एक जाली (आदेश) है, और इसलिए उपरोक्त वितरण और पूरक कानूनों के साथ, यह दर्शाता है कि यह एक बूलियन बीजगणित (संरचना) है।

'प्रस्ताव 7': यदि A, B और C एक समुच्चय S के उपसमुच्चय हैं तो निम्नलिखित धारण करता है:

एक महानतम तत्व और एक महानतम तत्व का अस्तित्व:
जाली का अस्तित्व (आदेश):
  • अगर और , तब
जाली का अस्तित्व (आदेश):
  • अगर और , तब

निम्नलिखित प्रस्ताव कहता है कि कथन यूनियनों, चौराहों और पूरक से जुड़े कई अन्य बयानों के बराबर है।

प्रस्ताव 8: किसी भी दो समुच्चय और बी के लिए, निम्नलिखित समतुल्य हैं:

उपरोक्त प्रस्ताव से पता चलता है कि समुच्चय समावेशन के संबंध को समुच्चय यूनियन या समुच्चय इंटरसेक्शन के संचालन में से किसी एक द्वारा वर्णित किया जा सकता है, जिसका अर्थ है कि समुच्चय समावेशन की धारणा स्वयंसिद्ध रूप से अनावश्यक है।

सापेक्ष पूरक का बीजगणित

निम्नलिखित प्रस्ताव पूरक (समुच्चय सिद्धांत) और समुच्चय-सैद्धांतिक मतभेदों से संबंधित कई पहचानों को सूचीबद्ध करता है।

प्रस्ताव 9: किसी भी ब्रह्मांड यू और यू के उपसमुच्चय , बी और सी के लिए, निम्नलिखित सर्वसमिकाएँ हैं:


यह भी देखें

  • σ-बीजगणित समुच्चयों का एक बीजगणित है, जिसे गिनती के अनंत संक्रियाओं को शामिल करने के लिए पूरा किया गया है।
  • स्वयंसिद्ध समुच्चय सिद्धांत
  • छवि (गणित) # गुण
  • समुच्चय का क्षेत्र
  • निर्धारित पहचान और संबंधों की सूची
  • भोले समुच्चय सिद्धांत
  • समुच्चय (गणित)
  • टोपोलॉजिकल स्पेस # परिभाषाएँ - का एक सबसमुच्चय , का पावर समुच्चय मनमाना संघ, परिमित चौराहा और युक्त के संबंध में बंद और .

संदर्भ

  • Stoll, Robert R.; Set Theory and Logic, Mineola, N.Y.: Dover Publications (1979) ISBN 0-486-63829-4. "The Algebra of Sets", pp 16—23.
  • Courant, Richard, Herbert Robbins, Ian Stewart, What is mathematics?: An Elementary Approach to Ideas and Methods, Oxford University Press US, 1996. ISBN 978-0-19-510519-3. "SUPPLEMENT TO CHAPTER II THE ALGEBRA OF SETS".


बाहरी संबंध