समुच्चयों का बीजगणित: Difference between revisions

From Vigyanwiki
Line 60: Line 60:
::*<math>A \cup U = U</math>
::*<math>A \cup U = U</math>
::*<math>A \cap \varnothing = \varnothing</math>
::*<math>A \cap \varnothing = \varnothing</math>
:[[अवशोषण कानून]]:
:[[अवशोषण कानून|अवशोषण नियम]],
::*<math>A \cup (A \cap B) = A</math>
::*<math>A \cup (A \cap B) = A</math>
::*<math>A \cap (A \cup B) = A</math>
::*<math>A \cap (A \cup B) = A</math>
जैसा कि ऊपर उल्लेख किया गया है, प्रस्ताव 3 में वर्णित प्रत्येक कानून ऊपर बताए गए कानूनों के पांच मौलिक जोड़े से प्राप्त किया जा सकता है<!---in proposition 1 and proposition 2--->. एक उदाहरण के रूप में, समुच्च के लिए निर्बल नियम के लिए एक प्रमाण नीचे दिया गया है।
जैसा कि ऊपर उल्लेख किया गया है, कि प्रस्ताव 3 में वर्णित प्रत्येक नियम ऊपर वर्णित  नियमो के पांच मौलिक जोड़े से प्राप्त किया जा सकता है। उदाहरण के तौर पर, समुच्च के लिए वर्गसम नियम के लिए एक प्रमाण नीचे दिया गया है।


सबूत:
प्रमाण,
{|
{|
|-
|-
|<math>A \cup A</math>
|<math>A \cup A</math>
|<math>=(A \cup A) \cap U</math>
|<math>=(A \cup A) \cap U</math>
|by the identity law of intersection
|प्रतिच्छेदन के तत्समक नियम द्वारा
|-
|-
|
|
|<math>=(A \cup A) \cap (A \cup A^C)</math>
|<math>=(A \cup A) \cap (A \cup A^C)</math>
|by the complement law for union
|समुच्च के पूरक नियम द्वारा
|-
|-
|
|
|<math>=A \cup (A \cap A^C)</math>
|<math>=A \cup (A \cap A^C)</math>
|by the distributive law of union over intersection
|प्रतिच्छेदन पर समुच्च के वितरण के नियम द्वारा
|-
|-
|
|
|<math>=A \cup \varnothing</math>
|<math>=A \cup \varnothing</math>
|by the complement law for intersection
|प्रतिच्छेदन के लिए पूरक नियम द्वारा
|-
|-
|
|
|<math>=A</math>
|<math>=A</math>
|by the identity law for union
|समुच्च के लिए तत्समक नियम द्वारा
|}
|}
निम्नलिखित प्रमाण यह दर्शाता है कि उपरोक्त प्रमाण का द्वैत समुच्च के लिए आदर्श नियम के द्वैत का प्रमाण है, अर्थात् प्रतिच्छेदन के लिए उदासीन नियम।
निम्नलिखित प्रमाण यह दर्शाता है कि उपरोक्त प्रमाण का द्वैत समुच्च के लिए वर्गसम नियम के द्वैत का प्रमाण है, अर्थात् प्रतिच्छेदन के लिए वर्गसम नियम।


सबूत:
प्रमाण,
{|
{|
|-
|-
|<math>A \cap A</math>
|<math>A \cap A</math>
|<math>=(A \cap A) \cup \varnothing</math>
|<math>=(A \cap A) \cup \varnothing</math>
|by the identity law for union
|समुच्च के लिए तत्समक नियम द्वारा
|-
|-
|
|
|<math>=(A \cap A) \cup (A \cap A^C)</math>
|<math>=(A \cap A) \cup (A \cap A^C)</math>
|by the complement law for intersection
|प्रतिच्छेदन के लिए पूरक नियम द्वारा
|-
|-
|
|
|<math>=A \cap (A \cup A^C)</math>
|<math>=A \cap (A \cup A^C)</math>
|by the distributive law of intersection over union
|समुच्च पर प्रतिच्छेदन के वितरण नियम द्वारा
|-
|-
|
|
|<math>=A \cap U</math>
|<math>=A \cap U</math>
|by the complement law for union
|समुच्च के लिए पूरक नियम द्वारा
|-
|-
|
|
|<math>=A</math>
|<math>=A</math>
|by the identity law for intersection
|प्रतिच्छेदन के लिए तत्समक नियम द्वारा
|}
|}
प्रतिच्छेदन को समुच्चय अंतर के रूप में व्यक्त किया जा सकता है:
प्रतिच्छेदन को समुच्चय अंतर के रूप में व्यक्त किया जा सकता है,


<math>A \cap B = A \setminus (A \setminus B) </math>
<math>A \cap B = A \setminus (A \setminus B) </math>
== पूरक के लिए कुछ अतिरिक्त नियम ==


 
निम्नलिखित प्रस्ताव समुच्चय बीजगणित के पांच और महत्वपूर्ण नियमों को बताता है, जिसमें पूरक सम्मिलित हैं।
== पूरक के लिए कुछ अतिरिक्त कानून ==
 
निम्नलिखित प्रस्ताव समुच्चय बीजगणित के पांच और महत्वपूर्ण कानूनों को बताता है, जिसमें पूरक सम्मिलित हैं।


प्रस्ताव 4: मान लीजिए कि ''A'' और ''B'' समष्टिय U के उपसमुच्चय हैं, तो:
प्रस्ताव 4: मान लीजिए कि ''A'' और ''B'' समष्टिय U के उपसमुच्चय हैं, तो:
: डी मॉर्गन के कानून:
: डी मॉर्गन के नियम:
::*<math>(A \cup B)^C = A^C \cap B^C</math>
::*<math>(A \cup B)^C = A^C \cap B^C</math>
::*<math>(A \cap B)^C = A^C \cup B^C</math>
::*<math>(A \cap B)^C = A^C \cup B^C</math>
:दोहरा पूरक या समावेश (गणित) कानून:
:दोहरा पूरक या समावेश (गणित) नियम:
::*<math>{(A^{C})}^{C} = A</math>
::*<math>{(A^{C})}^{C} = A</math>
: समष्टिय समुच्चय और खाली समुच्चय के लिए पूरक कानून:
: समष्टिय समुच्चय और खाली समुच्चय के लिए पूरक नियम:
::*<math>\varnothing^C = U</math>
::*<math>\varnothing^C = U</math>
::*<math>U^C = \varnothing</math>
::*<math>U^C = \varnothing</math>
ध्यान दें कि दोहरा पूरक नियम स्व-द्वैत है।
ध्यान दें कि दोहरा पूरक नियम स्व-द्वैत है।


अगला प्रस्ताव, जो स्व-द्वैत भी है, कहता है कि एक समुच्चय का पूरक ही एकमात्र ऐसा समुच्चय है जो पूरक नियमों को संतुष्ट करता है। दूसरे शब्दों में, पूरकता की विशेषता पूरक कानूनों द्वारा होती है।
अगला प्रस्ताव, जो स्व-द्वैत भी है, कहता है कि एक समुच्चय का पूरक ही एकमात्र ऐसा समुच्चय है जो पूरक नियमों को संतुष्ट करता है। दूसरे शब्दों में, पूरकता की विशेषता पूरक नियमों द्वारा होती है।


प्रस्ताव 5: मान लें कि ''A'' और ''B'' समष्टिय U के उपसमुच्चय हैं, तो:
प्रस्ताव 5: मान लें कि ''A'' और ''B'' समष्टिय U के उपसमुच्चय हैं, तो:
Line 152: Line 150:
: सकर्मक संबंध:
: सकर्मक संबंध:
::*अगर <math>A \subseteq B</math> और <math>B \subseteq C</math>, तब <math>A \subseteq C</math>
::*अगर <math>A \subseteq B</math> और <math>B \subseteq C</math>, तब <math>A \subseteq C</math>
निम्नलिखित प्रस्ताव कहता है कि किसी भी समुच्चय एस के लिए, समावेश द्वारा आदेशित एस का [[सत्ता स्थापित]], एक [[जाली (आदेश)]] है, और इसलिए उपरोक्त वितरण और पूरक कानूनों के साथ, यह दर्शाता है कि यह एक बूलियन बीजगणित (संरचना) है।
निम्नलिखित प्रस्ताव कहता है कि किसी भी समुच्चय एस के लिए, समावेश द्वारा आदेशित एस का [[सत्ता स्थापित]], एक [[जाली (आदेश)]] है, और इसलिए उपरोक्त वितरण और पूरक नियमों के साथ, यह दर्शाता है कि यह एक बूलियन बीजगणित (संरचना) है।


'प्रस्ताव 7': यदि A, B और C एक समुच्चय S के उपसमुच्चय हैं तो निम्नलिखित धारण करता है:
'प्रस्ताव 7': यदि A, B और C एक समुच्चय S के उपसमुच्चय हैं तो निम्नलिखित धारण करता है:
Line 204: Line 202:
* भोले समुच्चय सिद्धांत
* भोले समुच्चय सिद्धांत
* समुच्चय (गणित)
* समुच्चय (गणित)
* टोपोलॉजिकल स्पेस # परिभाषाएँ - का एक सबसमुच्चय <math>\wp(X)</math>, का पावर समुच्चय <math>X</math>मनमाना संघ, परिमित चौराहा और युक्त के संबंध में बंद <math>\emptyset</math> और <math>X</math>.
* टोपोलॉजिकल स्पेस # परिभाषाएँ - का एक सबसमुच्चय <math>\wp(X)</math>, का पावर समुच्चय <math>X</math>मनमाना समुच्च, परिमित चौराहा और युक्त के संबंध में बंद <math>\emptyset</math> और <math>X</math>.


==संदर्भ==
==संदर्भ==

Revision as of 12:24, 22 February 2023

गणित में, समुच्चयों का बीजगणित, समुच्चयों के बीजगणित की गणितीय संरचना के साथ भ्रमित नहीं होने के लिए, समुच्चय के गुणों और नियमों को परिभाषित करता है, समुच्च (समुच्चय सिद्धांत), प्रतिच्छेदन (समुच्चय सिद्धांत), और पूरकीकरण के समुच्चय-सैद्धांतिक प्रचालन, और समानता और संबंधों को स्थापित करता है। यह इन परिचालनों और संबंधों को सम्मिलित करने वाले व्यंजको के मूल्यांकन और गणना के लिए व्यवस्थित प्रक्रियाएं भी प्रदान करता है।

समुच्चय सिद्धांतपरक प्रचालन के तहत बंद समुच्चय का कोई भी समुच्चय एक बूलीय बीजगणित बनाता है, जिसमें सम्मिलित होने वाला प्रचालक 'समुच्च' होता है, अवसंधि संकारक 'प्रतिच्छेदन' होता है, पूरक प्रचालक 'समुच्चय पूरक' होता है, निचला होना और सबसे ऊपर समष्टिय (गणित) विचाराधीन है।

मूलभूत

समुच्चयों का बीजगणित संख्याओं के बीजगणित का समुच्चय-सैद्धांतिक अनुरूप है। जिस प्रकार अंकगणितीय योग और गुणन साहचर्यता और क्रमविनिमेयता हैं, उसी प्रकार समुच्चय समुच्च और प्रतिच्छेदन हैं, जिस तरह अंकगणितीय संबंध "इससे कम या बराबर" समतुल्य, प्रतिसममित और संक्रामक होता है, उसी तरह उपसमुच्चय का समुच्चय संबंध भी होता है।

यह समुच्च, प्रतिच्छेदन और पूरकता, और समानता और समावेश संबंधों के समुच्चय-सैद्धांतिक संचालन का बीजगणित है। समुच्चयों के मूल परिचय के लिए समुच्चयों पर लेख देखें, संपूर्ण विवरण के लिए सहज समुच्चय सिद्धांत देखें, और पूर्ण कठोर स्वयंसिद्ध उपचार के लिए स्वयंसिद्ध समुच्चय सिद्धांत देखें।

समुच्चय बीजगणित के मौलिक गुण

समुच्चय समुच्च के द्विआधारी संक्रिया () और प्रतिच्छेदन (समुच्चय सिद्धांत) () कई सर्वसमिकाओं को संतुष्ट करते हैं। इनमें से कई सर्वसमिकाओं या नियमो के प्रमाणित नाम हैं।

क्रमचयी गुणधर्म,
साहचर्य गुणधर्म,
व्यष्टि गुणधर्म,

समुच्चयों के समुच्च और प्रतिच्छेदन को संख्याओं के योग और गुणन के अनुरूप देखा जा सकता है। योग और गुणा की तरह, समुच्च और प्रतिच्छेदन के संचालन क्रमविनिमेय और साहचर्य होते हैं, और प्रतिच्छेदन समुच्च पर वितरित होते हैं। हालाँकि, योग और गुणा के विपरीत, समुच्च भी प्रतिच्छेदन पर वितरित करता है।

गुणों के दो अतिरिक्त जोड़े में विशिष्ट समुच्चय सम्मिलित होते हैं जिन्हें रिक्त समुच्चय Ø और समष्टीय समुच्चय कहा जाता है, पूरक सकारक के साथ (, के पूरक को दर्शाता है। इसे के रूप में भी लिखा जा सकता है, और अभाज्य के रूप में पढ़ा जा सकता है)। खाली समुच्चय में कोई सदस्य नहीं है, और समष्टिय समुच्चय में सभी संभावित सदस्य हैं (एक विशेष संदर्भ में)।

सर्वसमिका,
पूरक ,

सर्वसमिका व्यंजक (क्रम विनिमय व्यंजकों के साथ) निर्देशित करते हैं कि, जैसे 0 और 1 जोड़ और गुणा के लिए, Ø और क्रमशः समुच्च और प्रतिच्छेदन के लिए तत्समक अवयव होते हैं।

जोड़ और गुणा के विपरीत, समुच्च और प्रतिच्छेदन में प्रतिलोम अवयव नहीं होते हैं। हालांकि पूरक नियम समुच्चय पूरकता के एकाधारी संक्रिया के कुछ व्युत्क्रम- जैसे मौलिक गुण प्रदान करते हैं।

सूत्रों के पूर्ववर्ती पांच जोड़े - क्रमविनिमेय, साहचर्य, वितरण, सर्वसमिका और पूरक सूत्र - सभी समुच्चय बीजगणित को सम्मिलित करते हैं, इस अर्थ में कि समुच्चय बीजगणित में प्रत्येक वैध कथन उनसे प्राप्त किया जा सकता है।

ध्यान दें कि यदि नियम द्वारा पूरक सूत्रों को कमजोर किया जाता है, तो यह बिल्कुल प्रस्तावात्मक रैखिक तर्क का बीजगणित है[clarification needed].

द्वैतता का सिद्धांत

ऊपर दि गई प्रत्येक सर्वसमिका, सर्वसमिकाओं की एक जोड़ी में से एक है, जैसे कि प्रत्येक को ∪ और ∩, और Ø और U को परस्पर बदलकर दूसरे में रूपांतरित किया जा सकता है।

ये समुच्चय बीजगणित की एक अत्यंत महत्वपूर्ण और घातीय गुण के उदाहरण हैं, अर्थात्, समुच्चय के लिए द्वैतता का सिद्धांत, जो दावा करता है कि एक समुच्चय के बारे में किसी भी सच्चे कथन के लिए, समुच्च और प्रतिच्छेदन को बदलने, U और Ø को बदलने और समावेशन को उलटने से प्राप्त होने वाला दोहरा बयान भी सच है। एक कथन को स्व-द्वैत कहा जाता है यदि यह अपने स्वयं के द्वैत के बराबर है।

समुच्च और प्रतिच्छेदन के लिए कुछ अतिरिक्त नियम

निम्नलिखित प्रस्ताव समुच्च और प्रतिच्छेदन सहित बीजगणित के छह और महत्वपूर्ण नियमो को निर्धारित करता है।

प्रस्ताव 3, समष्टीय समुच्चय U के किसी भी उपसमुच्चय A और B के लिए, निम्नलिखित सर्वसमिकाएं मान्य हैं,

वर्गसम नियम,
वर्चस्व नियम,
अवशोषण नियम,

जैसा कि ऊपर उल्लेख किया गया है, कि प्रस्ताव 3 में वर्णित प्रत्येक नियम ऊपर वर्णित नियमो के पांच मौलिक जोड़े से प्राप्त किया जा सकता है। उदाहरण के तौर पर, समुच्च के लिए वर्गसम नियम के लिए एक प्रमाण नीचे दिया गया है।

प्रमाण,

प्रतिच्छेदन के तत्समक नियम द्वारा
समुच्च के पूरक नियम द्वारा
प्रतिच्छेदन पर समुच्च के वितरण के नियम द्वारा
प्रतिच्छेदन के लिए पूरक नियम द्वारा
समुच्च के लिए तत्समक नियम द्वारा

निम्नलिखित प्रमाण यह दर्शाता है कि उपरोक्त प्रमाण का द्वैत समुच्च के लिए वर्गसम नियम के द्वैत का प्रमाण है, अर्थात् प्रतिच्छेदन के लिए वर्गसम नियम।

प्रमाण,

समुच्च के लिए तत्समक नियम द्वारा
प्रतिच्छेदन के लिए पूरक नियम द्वारा
समुच्च पर प्रतिच्छेदन के वितरण नियम द्वारा
समुच्च के लिए पूरक नियम द्वारा
प्रतिच्छेदन के लिए तत्समक नियम द्वारा

प्रतिच्छेदन को समुच्चय अंतर के रूप में व्यक्त किया जा सकता है,

पूरक के लिए कुछ अतिरिक्त नियम

निम्नलिखित प्रस्ताव समुच्चय बीजगणित के पांच और महत्वपूर्ण नियमों को बताता है, जिसमें पूरक सम्मिलित हैं।

प्रस्ताव 4: मान लीजिए कि A और B समष्टिय U के उपसमुच्चय हैं, तो:

डी मॉर्गन के नियम:
दोहरा पूरक या समावेश (गणित) नियम:
समष्टिय समुच्चय और खाली समुच्चय के लिए पूरक नियम:

ध्यान दें कि दोहरा पूरक नियम स्व-द्वैत है।

अगला प्रस्ताव, जो स्व-द्वैत भी है, कहता है कि एक समुच्चय का पूरक ही एकमात्र ऐसा समुच्चय है जो पूरक नियमों को संतुष्ट करता है। दूसरे शब्दों में, पूरकता की विशेषता पूरक नियमों द्वारा होती है।

प्रस्ताव 5: मान लें कि A और B समष्टिय U के उपसमुच्चय हैं, तो:

पूरक की विशिष्टता:
  • अगर , और , तब


समावेशन का बीजगणित

निम्नलिखित प्रस्ताव कहता है कि उपसमुच्चय, जो कि एक समुच्चय का दूसरे का उपसमुच्चय होने का द्विआधारी संबंध है, एक आंशिक क्रम है।

प्रस्ताव 6: यदि , बी और सी समुच्चय हैं तो निम्नलिखित होल्ड करता है:

प्रतिवर्त संबंध:
विषम संबंध:
  • और अगर और केवल अगर
सकर्मक संबंध:
  • अगर और , तब

निम्नलिखित प्रस्ताव कहता है कि किसी भी समुच्चय एस के लिए, समावेश द्वारा आदेशित एस का सत्ता स्थापित, एक जाली (आदेश) है, और इसलिए उपरोक्त वितरण और पूरक नियमों के साथ, यह दर्शाता है कि यह एक बूलियन बीजगणित (संरचना) है।

'प्रस्ताव 7': यदि A, B और C एक समुच्चय S के उपसमुच्चय हैं तो निम्नलिखित धारण करता है:

एक महानतम तत्व और एक महानतम तत्व का अस्तित्व:
जाली का अस्तित्व (आदेश):
  • अगर और , तब
जाली का अस्तित्व (आदेश):
  • अगर और , तब

निम्नलिखित प्रस्ताव कहता है कि कथन यूनियनों, चौराहों और पूरक से जुड़े कई अन्य बयानों के बराबर है।

प्रस्ताव 8: किसी भी दो समुच्चय और बी के लिए, निम्नलिखित समतुल्य हैं:

उपरोक्त प्रस्ताव से पता चलता है कि समुच्चय समावेशन के संबंध को समुच्चय यूनियन या समुच्चय इंटरसेक्शन के संचालन में से किसी एक द्वारा वर्णित किया जा सकता है, जिसका अर्थ है कि समुच्चय समावेशन की धारणा स्वयंसिद्ध रूप से अनावश्यक है।

सापेक्ष पूरक का बीजगणित

निम्नलिखित प्रस्ताव पूरक (समुच्चय सिद्धांत) और समुच्चय-सैद्धांतिक मतभेदों से संबंधित कई पहचानों को सूचीबद्ध करता है।

प्रस्ताव 9: किसी भी समष्टिय यू और यू के उपसमुच्चय , बी और सी के लिए, निम्नलिखित सर्वसमिकाएँ हैं:


यह भी देखें

  • σ-बीजगणित समुच्चयों का एक बीजगणित है, जिसे गिनती के अनंत संक्रियाओं को सम्मिलित करने के लिए पूरा किया गया है।
  • स्वयंसिद्ध समुच्चय सिद्धांत
  • छवि (गणित) # गुण
  • समुच्चय का क्षेत्र
  • निर्धारित पहचान और संबंधों की सूची
  • भोले समुच्चय सिद्धांत
  • समुच्चय (गणित)
  • टोपोलॉजिकल स्पेस # परिभाषाएँ - का एक सबसमुच्चय , का पावर समुच्चय मनमाना समुच्च, परिमित चौराहा और युक्त के संबंध में बंद और .

संदर्भ

  • Stoll, Robert R.; Set Theory and Logic, Mineola, N.Y.: Dover Publications (1979) ISBN 0-486-63829-4. "The Algebra of Sets", pp 16—23.
  • Courant, Richard, Herbert Robbins, Ian Stewart, What is mathematics?: An Elementary Approach to Ideas and Methods, Oxford University Press US, 1996. ISBN 978-0-19-510519-3. "SUPPLEMENT TO CHAPTER II THE ALGEBRA OF SETS".


बाहरी संबंध