ग्लूइंग अभिगृहीत
गणित में, ग्लूइंग स्वयंसिद्ध को परिभाषित करने के लिए पेश किया जाता है कि एक एक टोपोलॉजिकल स्पेस पर शीफ (गणित) को क्या संतुष्ट होना चाहिए, यह देखते हुए कि यह एक प्रीशेफ है, जो कि परिभाषा के अनुसार एक प्रतिपरिवर्तक फ़ैक्टर है
एक श्रेणी के लिए जो शुरू में सेट की श्रेणी के रूप में लेता है। यहाँ समावेशन मानचित्रों द्वारा आदेशित के खुले सेट का आंशिक क्रम है; और एक अद्वितीय रूपवाद के साथ मानक तरीके से एक श्रेणी के रूप में माना जाता है
अगर का उपसमुच्चय है, और अन्यथा कोई नहीं।
जैसा कि शीफ (गणित) लेख में कहा गया है, एक निश्चित स्वयंसिद्ध है कि के खुले सेट के किसी भी खुले कवर के लिए संतुष्ट होना चाहिए. उदाहरण के लिए, दिए गए खुले सेट और संघ के साथ (सेट सिद्धांत) और प्रतिच्छेद (सेट सिद्धांत) , आवश्यक शर्त यह है कि
- का उपसमुच्चय है में समान छवि के साथ
कम औपचारिक भाषा में, एक खंड (श्रेणी सिद्धांत) का ऊपर वर्गों की एक जोड़ी द्वारा समान रूप से अच्छी तरह से दिया गया है: पर और क्रमशः, जो इस अर्थ में 'सहमत' हैं कि और में एक सामान्य छवि है संबंधित प्रतिबंध मानचित्रों के तहत
और
- .
शीफ थ्योरी में पहली बड़ी बाधा यह देखना है कि यह ग्लूइंग या पैचिंग स्वयंसिद्ध ज्यामितीय स्थितियों में सामान्य विचार से एक सही अमूर्त है। उदाहरण के लिए, एक वेक्टर क्षेत्र एक चिकने मैनिफोल्ड पर स्पर्शरेखा बंडल का एक खंड है; यह कहता है कि दो खुले सेटों के मिलन पर एक सदिश क्षेत्र दो समुच्चयों पर सदिश क्षेत्रों (इससे अधिक और कम नहीं) है जो सहमत हैं कि वे कहाँ ओवरलैप करते हैं।
इस बुनियादी समझ को देखते हुए, सिद्धांत में और भी मुद्दे हैं, और कुछ को यहां संबोधित किया जाएगा। एक अलग दिशा ग्रोथेंडिक टोपोलॉजी की है, और दूसरी 'स्थानीय अस्तित्व' की तार्किक स्थिति है (क्रिप्के-जॉयल सिमेंटिक्स देखें)।
== सी == पर प्रतिबंध हटा रहा है इस परिभाषा को इस तरह से बदलना जो किसी भी श्रेणी में काम करे इसकी पर्याप्त संरचना है, हम ध्यान दें कि हम उपरोक्त परिभाषा में शामिल वस्तुओं और आकारिकी को एक आरेख में लिख सकते हैं जिसे हम ग्लूइंग के लिए (जी) कहेंगे:
यहां पहला नक्शा प्रतिबंध मानचित्रों का उत्पाद है
और तीरों की प्रत्येक जोड़ी दो प्रतिबंधों का प्रतिनिधित्व करती है
और
- .
यह ध्यान देने योग्य है कि ये मानचित्र सभी संभावित प्रतिबंध मानचित्रों को समाप्त कर देते हैं , द , और यह .
के लिए शर्त एक पूला होना किसी भी खुले सेट के लिए है और खुले सेट का कोई भी संग्रह जिसका मिलन है , उपरोक्त आरेख (जी) एक तुल्यकारक_(गणित) है।
ग्लूइंग स्वयंसिद्ध को समझने का एक तरीका यह है कि इस पर ध्यान दिया जाए निम्नलिखित आरेख का कोलिमिट है:
ग्लूइंग स्वयंसिद्ध कहता है ऐसे रेखाचित्रों की कोलिमिट को लिमिट में बदल देता है।
खुले सेट के आधार पर ढेर
कुछ श्रेणियों में, इसके केवल कुछ वर्गों को निर्दिष्ट करके एक पूला बनाना संभव है। विशेष रूप से, चलो टोपोलॉजिकल स्पेस के आधार पर एक टोपोलॉजिकल स्पेस हो . हम एक वर्ग को परिभाषित कर सकते हैं O′(X) की पूर्ण उपश्रेणी होना जिनकी वस्तुएँ हैं . एक बी-शेफ ऑन मूल्यों के साथ यह एक प्रतिपरिवर्ती संकारक है
जो सेट के लिए ग्लूइंग स्वयंसिद्ध को संतुष्ट करता है . यानी के खुले सेट के चयन पर , एक पूले के सभी वर्गों को निर्दिष्ट करता है, और अन्य खुले सेटों पर, यह अनिर्धारित है।
बी-शेव्स शेव्स के बराबर हैं (यानी, शेव्स की श्रेणी बी-शेव्स की श्रेणी के बराबर है)।[1] स्पष्ट रूप से एक पुलिया पर बी-शेफ तक सीमित किया जा सकता है। दूसरी दिशा में बी-शेफ दिया हमें के वर्गों का निर्धारण करना चाहिए की अन्य वस्तुओं पर . ऐसा करने के लिए, ध्यान दें कि प्रत्येक खुले सेट के लिए , हम एक संग्रह पा सकते हैं जिसका मिलन है . स्पष्ट रूप से बोलना, यह चुनाव करता है की पूर्ण उपश्रेणी की कोलिमिट जिनकी वस्तुएं हैं . तब से विरोधाभासी है, हम परिभाषित करते हैं की अनुमानित सीमा होना प्रतिबंध मानचित्र के संबंध में। (यहां हमें यह मान लेना चाहिए कि यह सीमा में मौजूद है ।) अगर एक बुनियादी खुला सेट है, फिर की उपश्रेणी का टर्मिनल ऑब्जेक्ट है , और इसलिए . इसलिए, का विस्तार पर एक presheaf के लिए . इसे सत्यापित किया जा सकता है एक शीफ है, अनिवार्य रूप से क्योंकि हर खुले कवर का हर तत्व आधार तत्वों का एक संघ है (एक आधार की परिभाषा के अनुसार), और तत्वों के प्रत्येक जोड़ीदार चौराहे के एक खुले आवरण में आधार तत्वों का एक संघ है (फिर से आधार की परिभाषा द्वारा)।
== सी == का तर्क शीफ सिद्धांत की पहली जरूरत एबेलियन समूहों के पूलों के लिए थी; इसलिए श्रेणी ले रहा है क्योंकि एबेलियन समूहों की श्रेणी केवल प्राकृतिक थी। ज्यामिति के अनुप्रयोगों में, उदाहरण के लिए जटिल कई गुना और बीजगणितीय ज्यामिति, स्थानीय रिंगों के एक समूह का विचार केंद्रीय है। हालाँकि, यह बिल्कुल समान बात नहीं है; एक स्थानीय रूप से बजने वाले स्थान के बजाय बोलता है, क्योंकि यह सच नहीं है, केवल सामान्य मामलों को छोड़कर, कि इस तरह का एक पूला स्थानीय छल्लों की श्रेणी में एक मज़ेदार है। यह शीफ के डंठल हैं जो स्थानीय रिंग हैं, न कि वर्गों का संग्रह (स्थानीय अंगूठी (गणित) हैं, लेकिन सामान्य रूप से स्थानीय होने के करीब नहीं हैं)। हम स्थानीय रूप से चक्राकार स्थान के बारे में सोच सकते हैं स्थानीय छल्लों के एक पैरामीट्रिज्ड परिवार के रूप में, पर निर्भर करता है में .
एक अधिक सावधानीपूर्वक चर्चा यहाँ किसी भी रहस्य को दूर करती है। एबेलियन समूहों, या अंगूठियों के समूह के बारे में कोई स्वतंत्र रूप से बात कर सकता है, क्योंकि वे बीजगणितीय संरचनाएं हैं (परिभाषित, यदि कोई एक स्पष्ट हस्ताक्षर (तर्क) द्वारा जोर देता है)। कोई भी श्रेणी उत्पाद (श्रेणी सिद्धांत) होने से समूह वस्तु के विचार का समर्थन होता है, जिसे कुछ लोग समूह को कॉल करना पसंद करते हैं . इस तरह की विशुद्ध रूप से बीजगणितीय संरचना के मामले में, हम या तो एबेलियन समूहों की श्रेणी में मान रखने वाले पूले की बात कर सकते हैं, या समुच्चय के ढेरों की श्रेणी में एबेलियन समूह की बात कर सकते हैं; यह वास्तव में मायने नहीं रखता।
स्थानीय रिंग मामले में, यह मायने रखता है। एक मूलभूत स्तर पर हमें परिभाषा की दूसरी शैली का उपयोग करना चाहिए, यह वर्णन करने के लिए कि किसी श्रेणी में स्थानीय रिंग का क्या अर्थ है। यह एक तार्किक मामला है: एक स्थानीय वलय के लिए स्वयंसिद्धों को अस्तित्वगत परिमाणीकरण के उपयोग की आवश्यकता होती है, इस रूप में कि किसी के लिए रिंग में, एक और उलटा है। यह किसी को यह निर्दिष्ट करने की अनुमति देता है कि श्रेणी में पर्याप्त संरचना का समर्थन करने वाले मामले में 'श्रेणी में स्थानीय अंगूठी' क्या होनी चाहिए।
शेफिफिकेशन
दिए गए प्रीशेफ को चालू करने के लिए एक पूले में , शेफिफिकेशन या शेविंग नामक एक मानक उपकरण है। किसी को क्या करना चाहिए, इसका मोटा अंतर्ज्ञान, कम से कम सेट के प्रीशेफ के लिए, एक समानता संबंध पेश करना है, जो कवर को परिष्कृत करके ओवरलैप पर अलग-अलग कवर द्वारा दिए गए समकक्ष डेटा बनाता है। इसलिए एक तरीका यह है कि एक पूले के डंठल # एक पूले के डंठल पर जाएं और 'सर्वश्रेष्ठ संभव' पूले की जगह को पुनः प्राप्त करें से उत्पादित .
भाषा के इस प्रयोग से दृढ़ता से पता चलता है कि हम यहां आसन्न फ़ैक्टरों के साथ काम कर रहे हैं। इसलिए, यह देखने के लिए समझ में आता है कि शीशों पर प्रीशेव ऑन की पूरी उपश्रेणी बनाएं . इसमें निहित यह कथन है कि शीशों का एक रूपवाद, मज़दूरों के रूप में माने जाने वाले शीशों के प्राकृतिक परिवर्तन से अधिक कुछ नहीं है। इसलिए, हमें समावेशन के बगल में बाईं ओर शेफिफिकेशन का एक अमूर्त लक्षण वर्णन मिलता है। कुछ अनुप्रयोगों में, स्वाभाविक रूप से, किसी को विवरण की आवश्यकता होती है।
अधिक सारगर्भित भाषा में, ढेरों पर प्रीशेव्स की एक चिंतनशील उपश्रेणी बनाते हैं (मैक लेन-आईके मोरडिज्क शीव्स इन ज्योमेट्री एंड लॉजिक पी। 86)। टोपोस सिद्धांत में, एक लॉवरे-टिएर्नी टोपोलॉजी और उसके ढेरों के लिए, एक अनुरूप परिणाम होता है (ibid. पृ. 227)।
अन्य ग्लूइंग स्वयंसिद्ध
शीफ थ्योरी का ग्लूइंग स्वयंसिद्ध सामान्य है। कोई यह नोट कर सकता है कि होमोटॉपी सिद्धांत का मेयर-विएटोरिस स्वयंसिद्ध, उदाहरण के लिए, एक विशेष मामला है।
यह भी देखें
टिप्पणियाँ
- ↑ Vakil, Math 216: Foundations of algebraic geometry, 2.7.