गणित में, मैट्रिक्स कैलकुलस, विशेष रूप से मैट्रिक्स (गणित) के रिक्त स्थान पर बहुभिन्नरूपी कैलकुलस करने के लिए विशेष संकेतन है। यह कई चर (गणित) के संबंध में एकल फ़ंक्शन (गणित) के विभिन्न आंशिक डेरिवेटिव, और / या एकल चर के संबंध में बहुभिन्नरूपी फ़ंक्शन को वेक्टर (गणित और भौतिकी) और मैट्रिसेस में एकत्रित करता है जिसे इस रूप में माना जा सकता है एकल संस्थाएँ। यह संचालन को बहुत सरल करता है जैसे कि बहुभिन्नरूपी फ़ंक्शन का अधिकतम या न्यूनतम पता लगाना और अंतर समीकरणों की प्रणाली को हल करना। यहाँ प्रयुक्त अंकन आमतौर पर सांख्यिकी और अभियांत्रिकी में उपयोग किया जाता है, जबकि भौतिकी में टेन्सर इंडेक्स संकेतन को प्राथमिकता दी जाती है।
दो प्रतिस्पर्धी नोटेशनल कन्वेंशन मैट्रिक्स कैलकुलस के क्षेत्र को दो अलग-अलग समूहों में विभाजित करते हैं। दो समूहों को इस बात से अलग किया जा सकता है कि क्या वे पंक्ति और स्तंभ वैक्टर के रूप में वेक्टर के संबंध में स्केलर (गणित) के व्युत्पन्न लिखते हैं। ये दोनों सम्मेलन तब भी संभव हैं जब आम धारणा बनाई जाती है कि मैट्रिक्स के साथ संयुक्त होने पर वैक्टर को स्तंभ वैक्टर के रूप में माना जाना चाहिए (पंक्ति वैक्टर के बजाय)। एकल सम्मेलन एकल क्षेत्र में कुछ हद तक मानक हो सकता है जो आमतौर पर मैट्रिक्स कैलकुलस (जैसे अर्थमिति, सांख्यिकी, अनुमान सिद्धांत और यंत्र अधिगम ) का उपयोग करता है। हालाँकि, किसी दिए गए क्षेत्र के भीतर भी विभिन्न लेखकों को प्रतिस्पर्धी सम्मेलनों का उपयोग करते हुए पाया जा सकता है। दोनों समूहों के लेखक अक्सर लिखते हैं जैसे कि उनका विशिष्ट सम्मेलन मानक था। विभिन्न लेखकों के परिणामों को ध्यान से सत्यापित किए बिना कि संगत नोटेशन का उपयोग किया गया है, गंभीर गलतियाँ हो सकती हैं। इन दो सम्मेलनों की परिभाषाएँ और उनके बीच तुलना #लेआउट सम्मेलनों के अनुभाग में एकत्र की जाती है।
मैट्रिक्स गणना कई अलग-अलग नोटेशन को संदर्भित करता है जो स्वतंत्र चर के प्रत्येक घटक के संबंध में निर्भर चर के प्रत्येक घटक के व्युत्पन्न एकत्र करने के लिए मैट्रिक्स और वैक्टर का उपयोग करता है। सामान्य तौर पर, स्वतंत्र चर अदिश, सदिश या मैट्रिक्स हो सकता है जबकि आश्रित चर इनमें से कोई भी हो सकता है। शब्द के व्यापक अर्थ का उपयोग करते हुए, प्रत्येक अलग स्थिति नियमों के अलग सेट या अलग कलन की ओर ले जाएगी। मैट्रिक्स संकेतन संगठित तरीके से कई डेरिवेटिव को इकट्ठा करने का सुविधाजनक तरीका है।
पहले उदाहरण के रूप में, वेक्टर पथरी से ग्रेडियेंट पर विचार करें। तीन स्वतंत्र चरों के अदिश फलन के लिए, , ग्रेडिएंट वेक्टर समीकरण द्वारा दिया जाता है
,
कहाँ में इकाई वेक्टर का प्रतिनिधित्व करता है के लिए दिशा . इस प्रकार के सामान्यीकृत व्युत्पन्न को वेक्टर के संबंध में स्केलर, एफ के व्युत्पन्न के रूप में देखा जा सकता है, , और इसका परिणाम वेक्टर रूप में आसानी से एकत्र किया जा सकता है।
अधिक जटिल उदाहरणों में मैट्रिक्स के संबंध में स्केलर फ़ंक्शन का व्युत्पन्न शामिल है, जिसे मेट्रिसेस के साथ #डेरिवेटिव्स के रूप में जाना जाता है, जो परिणामी मैट्रिक्स में संबंधित स्थिति में प्रत्येक मैट्रिक्स तत्व के संबंध में व्युत्पन्न एकत्र करता है। उस स्थिति में स्केलर मैट्रिक्स में प्रत्येक स्वतंत्र चर का कार्य होना चाहिए। अन्य उदाहरण के रूप में, यदि हमारे पास स्वतंत्र चर के निर्भर चर, या कार्यों का एन-वेक्टर है, तो हम स्वतंत्र वेक्टर के संबंध में निर्भर वेक्टर के व्युत्पन्न पर विचार कर सकते हैं। परिणाम एम × एन मैट्रिक्स में एकत्र किया जा सकता है जिसमें सभी संभावित व्युत्पन्न संयोजन शामिल हैं।
स्केलर, वैक्टर और मैट्रिसेस का उपयोग करने की कुल नौ संभावनाएँ हैं। ध्यान दें कि जैसा कि हम प्रत्येक स्वतंत्र और आश्रित चर में घटकों की उच्च संख्या पर विचार करते हैं, हम बहुत बड़ी संख्या में संभावनाओं के साथ रह सकते हैं। छह प्रकार के डेरिवेटिव जिन्हें मैट्रिक्स रूप में सबसे अच्छी तरह से व्यवस्थित किया जा सकता है, उन्हें निम्न तालिका में एकत्र किया गया है।[1]
Types of matrix derivative
Types
Scalar
Vector
Matrix
Scalar
Vector
आव्यूह
यहां, हमने मैट्रिक्स शब्द का उपयोग इसके सबसे सामान्य अर्थ में किया है, यह पहचानते हुए कि वैक्टर और स्केलर क्रमशः कॉलम और पंक्ति के साथ मैट्रिसेस हैं। इसके अलावा, हमने मैट्रिक्स के लिए बोल्ड अक्षरों और बोल्ड कैपिटल अक्षरों को इंगित करने के लिए बोल्ड अक्षरों का उपयोग किया है। इस संकेतन का प्रयोग सर्वत्र किया जाता है।
ध्यान दें कि हम मैट्रिक्स के संबंध में सदिश के व्युत्पन्न के बारे में भी बात कर सकते हैं, या हमारी तालिका में किसी भी अन्य अपूर्ण कोशिकाओं के बारे में बात कर सकते हैं। हालांकि, ये डेरिवेटिव सबसे स्वाभाविक रूप से 2 से अधिक रैंक के टेन्सर में व्यवस्थित होते हैं, ताकि वे मैट्रिक्स में बड़े करीने से फिट न हों। निम्नलिखित तीन भागों में हम इनमें से प्रत्येक अवकलज को परिभाषित करेंगे और उन्हें गणित की अन्य शाखाओं से संबंधित करेंगे। अधिक विस्तृत तालिका के लिए #लेआउट कन्वेंशन अनुभाग देखें।
अन्य डेरिवेटिव से संबंध
गणना करने के लिए आंशिक डेरिवेटिव का ट्रैक रखने के लिए मैट्रिक्स डेरिवेटिव सुविधाजनक संकेतन है। वैक्टर के संबंध में डेरिवेटिव लेने के लिए कार्यात्मक विश्लेषण की सेटिंग में फ्रेचेट व्युत्पन्न मानक तरीका है। इस मामले में कि मैट्रिक्स का मैट्रिक्स फ़ंक्शन फ़्रेचेट अलग-अलग है, दो डेरिवेटिव नोटेशन के अनुवाद के लिए सहमत होंगे। जैसा कि सामान्य रूप से आंशिक डेरिवेटिव के मामले में होता है, कुछ सूत्र कमजोर विश्लेषणात्मक स्थितियों के तहत डेरिवेटिव के अस्तित्व की तुलना में अनुमानित रैखिक मानचित्रण के रूप में विस्तारित हो सकते हैं।
उपयोग
इष्टतम स्टोचैस्टिक अनुमानक प्राप्त करने के लिए मैट्रिक्स कैलकुलस का उपयोग किया जाता है, जिसमें अक्सर लैग्रेंज गुणक का उपयोग शामिल होता है। इसमें निम्न की व्युत्पत्ति शामिल है:
बड़ी संख्या में चर का प्रतिनिधित्व करने के लिए एकल चर का उपयोग करते हुए, मैट्रिक्स संकेतन का पूरा लाभ उठाने के लिए अनुभागों में प्रस्तुत वेक्टर और मैट्रिक्स डेरिवेटिव। इसके बाद हम स्केलर, वैक्टर और मैट्रिसेस को उनके टाइपफेस द्वारा अलग करेंगे। हम एम (एन, एम) को एन पंक्तियों और एम कॉलम के साथ वास्तविक संख्या एन × एम मैट्रिक्स अंकन स्थान को इंगित करेंगे। इस तरह के मैट्रिसेस को बोल्ड कैपिटल लेटर्स: 'ए', 'एक्स', 'वाई', आदि का उपयोग करके दर्शाया जाएगा। एम (एन, 1) का तत्व, जो कॉलम वेक्टर है, को बोल्डफेस लोअरकेस लेटर के साथ दर्शाया गया है: ' ए', 'एक्स', 'वाई', आदि। एम (1,1) का तत्व स्केलर है, जिसे लोअरकेस इटैलिक टाइपफेस के साथ दर्शाया गया है: ए, टी, एक्स, आदि। 'एक्स'T मैट्रिक्स खिसकाना को दर्शाता है, tr(X) ट्रेस (रैखिक बीजगणित) है, और det(X) या |X है। सभी कार्यों को अवकलनीयता वर्ग सी का माना जाता है1 जब तक अन्यथा नोट न किया गया हो। आम तौर पर वर्णमाला के पहले भाग (ए, बी, सी, ...) के अक्षरों का उपयोग स्थिरांक को दर्शाने के लिए किया जाएगा, और दूसरी छमाही (टी, एक्स, वाई, ...) से चर को दर्शाने के लिए।
नोट: जैसा कि ऊपर उल्लेख किया गया है, वेक्टर और मैट्रिसेस में आंशिक डेरिवेटिव की प्रणालियों को निर्धारित करने के लिए प्रतिस्पर्धी अंकन हैं, और अभी तक कोई मानक उभरता हुआ प्रतीत नहीं होता है। चर्चा को अत्यधिक जटिल बनाने से बचने के लिए, अगले दो परिचयात्मक खंड केवल सुविधा के प्रयोजनों के लिए #लेआउट सम्मेलनों का उपयोग करते हैं। उनके बाद का खंड #लेआउट सम्मेलनों पर अधिक विस्तार से चर्चा करता है। निम्नलिखित को समझना महत्वपूर्ण है:
गणक लेआउट और भाजक लेआउट शब्दों के उपयोग के बावजूद, वास्तव में दो से अधिक संभावित नोटेशनल विकल्प शामिल हैं। इसका कारण यह है कि अदिश-दर-सदिश, सदिश-दर-अदिश, सदिश-दर-सदिश, और अदिश-दर-सदिश के लिए अंश बनाम भाजक (या कुछ स्थितियों में, अंश बनाम मिश्रित) का चुनाव स्वतंत्र रूप से किया जा सकता है। मैट्रिक्स डेरिवेटिव, और कई लेखक विभिन्न तरीकों से अपने लेआउट विकल्पों को मिलाते हैं और मेल खाते हैं।
नीचे दिए गए परिचयात्मक खंडों में अंश लेआउट का विकल्प यह नहीं दर्शाता है कि यह सही या बेहतर विकल्प है। विभिन्न लेआउट प्रकारों के फायदे और नुकसान हैं। अलग-अलग लेआउट में लिखे गए फ़ार्मुलों को लापरवाही से संयोजित करने से गंभीर गलतियाँ हो सकती हैं, और त्रुटियों से बचने के लिए लेआउट से दूसरे में परिवर्तित करने के लिए देखभाल की आवश्यकता होती है। परिणामस्वरूप, मौजूदा फ़ार्मुलों के साथ काम करते समय सबसे अच्छी नीति यह है कि सभी स्थितियों में समान लेआउट का उपयोग करने का प्रयास करने के बजाय किसी भी लेआउट का उपयोग किया जाए और उसके साथ निरंतरता बनाए रखी जाए।
विकल्प
इसके आइंस्टीन सारांश सम्मेलन के साथ टेंसर इंडेक्स नोटेशन मैट्रिक्स कैलकुस के समान ही है, सिवाय इसके कि समय में केवल ही घटक लिखता है। इसका लाभ यह है कि मनमाने ढंग से उच्च कोटि के टेंसरों में आसानी से हेरफेर किया जा सकता है, जबकि दो से अधिक रैंक के टेंसर मैट्रिक्स संकेतन के साथ काफी बोझिल होते हैं। एकल-चर मैट्रिक्स संकेतन के उपयोग के बिना इस अंकन में यहां सभी कार्य किए जा सकते हैं। हालांकि, आकलन सिद्धांत और अनुप्रयुक्त गणित के अन्य क्षेत्रों में कई समस्याओं के परिणामस्वरूप उन क्षेत्रों में मैट्रिक्स कैलकुलस के पक्ष में इंगित करते हुए ठीक से ट्रैक रखने के लिए बहुत सारे सूचकांक होंगे। इसके अलावा, आइंस्टीन योग विशिष्ट तत्व संकेतन के विकल्प के रूप में यहां प्रस्तुत पहचानों को साबित करने में बहुत उपयोगी हो सकता है (रिक्की कैलकुलस # डिफरेंशिएशन पर अनुभाग देखें), जो स्पष्ट योगों के चारों ओर ले जाने पर बोझिल हो सकता है। ध्यान दें कि मैट्रिक्स को कोटि दो का टेन्सर माना जा सकता है।
क्योंकि सदिश केवल स्तंभ वाले आव्यूह होते हैं, सरलतम आव्यूह व्युत्पन्न सदिश अवकलज होते हैं।
यहां विकसित अंकन यूक्लिडियन अंतरिक्ष 'आर' के साथ एन-वैक्टरों के अंतरिक्ष एम (एन, 1) की पहचान करके वेक्टर कैलकुस के सामान्य संचालन को समायोजित कर सकते हैं।n, और अदिश M(1,1) की पहचान 'R' से की जाती है। सदिश कलन से संबंधित अवधारणा प्रत्येक उपधारा के अंत में इंगित की गई है।
'टिप्पणी': इस खंड में चर्चा शैक्षणिक उद्देश्यों के लिए #लेआउट सम्मेलनों को मानती है। कुछ लेखक विभिन्न सम्मेलनों का उपयोग करते हैं। #लेआउट सम्मेलनों पर अनुभाग इस मुद्दे पर अधिक विस्तार से चर्चा करता है। नीचे दी गई पहचानों को उन रूपों में प्रस्तुत किया जाता है जिनका उपयोग सभी सामान्य लेआउट सम्मेलनों के संयोजन में किया जा सकता है।
वेक्टर-बाय-स्केलर
एक यूक्लिडियन वेक्टर का व्युत्पन्न , अदिश (गणित) द्वारा x को (#लेआउट परिपाटियों में) के रूप में लिखा जाता है
सदिश कलन में अदिश x के संबंध में सदिश y के व्युत्पन्न को सदिश y के स्पर्शरेखा सदिश के रूप में जाना जाता है, . यहाँ ध्यान दें कि y: R1 → आरमी.
'उदाहरण' इसके सरल उदाहरणों में यूक्लिडियन अंतरिक्ष में वेग वेक्टर शामिल है, जो स्थिति (वेक्टर) वेक्टर (समय के कार्य के रूप में माना जाता है) का स्पर्शरेखा वेक्टर है। साथ ही, त्वरण वेग का स्पर्शरेखा सदिश है।
स्केलर-बाय-वेक्टर
सदिश द्वारा अदिश (गणित) y का व्युत्पन्न , लिखा है (#लेआउट सम्मेलनों में) के रूप में
सदिश कलन में, अंतरिक्ष 'R' में अदिश क्षेत्र f की प्रवणताn (जिसके स्वतंत्र निर्देशांक 'x' के घटक हैं) सदिश द्वारा अदिश के व्युत्पन्न का स्थानान्तरण है।
उदाहरण के लिए, भौतिकी में, विद्युत क्षेत्र विद्युत क्षमता का ऋणात्मक सदिश प्रवणता है।
स्पेस वेक्टर 'x' के स्केलर फंक्शन f('x') का दिशात्मक व्युत्पन्न यूनिट वेक्टर 'u' (इस मामले में कॉलम वेक्टर के रूप में दर्शाया गया है) की दिशा में ग्रेडिएंट का उपयोग करके परिभाषित किया गया है।
एक वेक्टर के संबंध में स्केलर के व्युत्पन्न के लिए परिभाषित नोटेशन का उपयोग करके हम दिशात्मक व्युत्पन्न को फिर से लिख सकते हैं
उत्पाद नियमों और श्रृंखला नियमों को साबित करते समय इस प्रकार का अंकन अच्छा होगा जो स्केलर डेरिवेटिव के लिए हम परिचित हैं।
वेक्टर-दर-वेक्टर
पिछले दो मामलों में से प्रत्येक को वेक्टर के संबंध में वेक्टर के व्युत्पन्न के आवेदन के रूप में माना जा सकता है, आकार के वेक्टर का उचित उपयोग करके। इसी तरह हम पाएंगे कि मैट्रिसेस वाले डेरिवेटिव समान तरीके से वैक्टर से जुड़े डेरिवेटिव में कम हो जाएंगे।
सदिश फलन का व्युत्पन्न (एक सदिश जिसके घटक फलन हैं) , इनपुट वेक्टर के संबंध में, , लिखा है (#लेआउट सम्मेलनों में) के रूप में
सदिश कैलकुलस में, सदिश x के संबंध में सदिश फलन y का व्युत्पन्न, जिसके घटक स्थान का प्रतिनिधित्व करते हैं, पुशफॉरवर्ड (डिफरेंशियल)|पुशफॉरवर्ड (या डिफरेंशियल) या जैकबियन मैट्रिक्स के रूप में जाना जाता है।
R में वेक्टर v के संबंध में वेक्टर फ़ंक्शन f के साथ पुशफ़ॉरवर्डn द्वारा दिया गया है
मेट्रिसेस के साथ डेरिवेटिव्स
मैट्रिसेस के साथ दो प्रकार के डेरिवेटिव हैं जिन्हें समान आकार के मैट्रिक्स में व्यवस्थित किया जा सकता है। ये अदिश द्वारा मैट्रिक्स के व्युत्पन्न और मैट्रिक्स द्वारा अदिश के व्युत्पन्न हैं। ये लागू गणित के कई क्षेत्रों में पाई जाने वाली न्यूनीकरण समस्याओं में उपयोगी हो सकते हैं और सदिशों के लिए उनके अनुरूपों के बाद क्रमशः स्पर्शरेखा मैट्रिक्स और ढाल मैट्रिक्स नामों को अपनाया है।
नोट: इस खंड में चर्चा शैक्षणिक उद्देश्यों के लिए #लेआउट सम्मेलनों को मानती है। कुछ लेखक विभिन्न सम्मेलनों का उपयोग करते हैं। #लेआउट सम्मेलनों पर अनुभाग इस मुद्दे पर अधिक विस्तार से चर्चा करता है। नीचे दी गई पहचानों को उन रूपों में प्रस्तुत किया जाता है जिनका उपयोग सभी सामान्य लेआउट सम्मेलनों के संयोजन में किया जा सकता है।
मैट्रिक्स-बाय-स्केलर
एक अदिश x द्वारा मैट्रिक्स फ़ंक्शन Y के व्युत्पन्न को स्पर्शरेखा मैट्रिक्स के रूप में जाना जाता है और इसे (#लेआउट सम्मेलनों में) द्वारा दिया जाता है
अदिश-दर-मैट्रिक्स
मैट्रिक्स 'एक्स' के संबंध में स्वतंत्र चर के पी × क्यू मैट्रिक्स 'एक्स' के स्केलर वाई फ़ंक्शन का व्युत्पन्न (#लेआउट सम्मेलनों में) द्वारा दिया जाता है
मैट्रिसेस के स्केलर फ़ंक्शंस के महत्वपूर्ण उदाहरणों में मैट्रिक्स का ट्रेस (रैखिक बीजगणित) और निर्धारक शामिल हैं।
वेक्टर कलन के अनुरूप इस व्युत्पन्न को अक्सर निम्नलिखित के रूप में लिखा जाता है।
सदिश कलन के अनुरूप भी, मैट्रिक्स Y की दिशा में मैट्रिक्स X के अदिश f(X) का दिशात्मक व्युत्पन्न द्वारा दिया जाता है
यह ग्रेडिएंट मैट्रिक्स है, विशेष रूप से, जो अनुमान सिद्धांत में न्यूनीकरण की समस्याओं में कई उपयोग पाता है, विशेष रूप से कलमन फ़िल्टर # कलमैन फ़िल्टर एल्गोरिथम की व्युत्पत्ति, जो इस क्षेत्र में बहुत महत्वपूर्ण है।
अन्य मैट्रिक्स डेरिवेटिव
जिन तीन प्रकार के डेरिवेटिव पर विचार नहीं किया गया है, वे वे हैं जिनमें वैक्टर-बाय-मैट्रिसेस, मैट्रिसेस-बाय-वैक्टर और मैट्रिसेस-बाय-मैट्रिसेस शामिल हैं। इन्हें व्यापक रूप से नहीं माना जाता है और संकेतन पर व्यापक रूप से सहमति नहीं है।
लेआउट कन्वेंशन
यह खंड मैट्रिक्स कैलकुलस का लाभ उठाने वाले विभिन्न क्षेत्रों में उपयोग किए जाने वाले सांकेतिक सम्मेलनों के बीच समानता और अंतर पर चर्चा करता है। हालांकि मोटे तौर पर दो सुसंगत परिपाटियां हैं, कुछ लेखकों को दो परिपाटियों को उन रूपों में मिलाना सुविधाजनक लगता है जिनकी चर्चा नीचे की गई है। इस खंड के बाद, समीकरणों को दोनों प्रतिस्पर्धी रूपों में अलग-अलग सूचीबद्ध किया जाएगा।
मूलभूत मुद्दा यह है कि वेक्टर के संबंध में वेक्टर का व्युत्पन्न, यानी , अक्सर दो प्रतिस्पर्धी तरीकों से लिखा जाता है। यदि अंश y का आकार m और भाजक x का आकार n है, तो परिणाम को m×n मैट्रिक्स या n×m के रूप में रखा जा सकता है। मैट्रिक्स, यानी y के तत्व स्तंभों में रखे गए हैं और x के तत्व पंक्तियों में रखे गए हैं, या इसके विपरीत। यह निम्नलिखित संभावनाओं की ओर जाता है:
न्यूमरेटर लेआउट, यानी y और x के हिसाब से लेआउटटी (अर्थात् x के विपरीत)। इसे कभी-कभी 'जैकोबियन सूत्रीकरण' के रूप में जाना जाता है। यह पिछले उदाहरण में m×n लेआउट से संबंधित है।
डीनॉमिनेटर लेआउट, यानी वाई के हिसाब से लेआउटT और x (यानी y के विपरीत)। इसे कभी-कभी 'हेस्सियन सूत्रीकरण' के रूप में जाना जाता है। कुछ लेखक इस लेआउट को जैकोबियन (अंकीय लेआउट) के भेद में ग्रेडिएंट कहते हैं, जो इसका स्थानान्तरण है। (हालांकि, ढाल का अर्थ आमतौर पर व्युत्पन्न होता है लेआउट की परवाह किए बिना।) यह पिछले उदाहरण में n×m लेआउट से संबंधित है।
कभी-कभी दिखाई देने वाली तीसरी संभावना यह है कि डेरिवेटिव को इस रूप में लिखने पर जोर दिया जाए (अर्थात व्युत्पन्न x के स्थानान्तरण के संबंध में लिया गया है) और अंश लेआउट का पालन करें। इससे यह दावा करना संभव हो जाता है कि मैट्रिक्स को अंश और भाजक दोनों के अनुसार रखा गया है। व्यवहार में यह अंश लेआउट के समान परिणाम उत्पन्न करता है।
ढाल को संभालते समय और विपरीत मामला हमारे पास समान मुद्दे हैं। सुसंगत होने के लिए, हमें निम्नलिखित में से करना चाहिए:
अगर हम न्यूमरेटर लेआउट चुनते हैं हमें ग्रेडिएंट रखना चाहिए पंक्ति वेक्टर के रूप में, और स्तंभ वेक्टर के रूप में।
अगर हम डिनॉमिनेटर लेआउट चुनते हैं हमें ग्रेडिएंट रखना चाहिए स्तंभ वेक्टर के रूप में, और पंक्ति वेक्टर के रूप में।
ऊपर तीसरी संभावना में हम लिखते हैं और और न्यूमरेटर लेआउट का उपयोग करें।
गणित की सभी पाठ्यपुस्तकें और पेपर इस संबंध में सुसंगत नहीं हैं। यही है, कभी-कभी ही किताब या पेपर के भीतर अलग-अलग संदर्भों में अलग-अलग परंपराओं का इस्तेमाल किया जाता है। उदाहरण के लिए, कुछ लोग ग्रेडिएंट्स के लिए डिनोमिनेटर लेआउट चुनते हैं (उन्हें कॉलम वैक्टर के रूप में रखना), लेकिन वेक्टर-बाय-वेक्टर डेरिवेटिव के लिए न्यूमरेटर लेआउट
इसी तरह, जब स्केलर-बाय-मैट्रिक्स डेरिवेटिव की बात आती है और मैट्रिक्स-बाय-स्केलर डेरिवेटिव फिर वाई और एक्स के अनुसार लगातार न्यूमरेटर लेआउट देता हैT, जबकि सुसंगत भाजक लेआउट Y के अनुसार निर्धारित होता हैT और X. व्यवहार में, हालांकि, के लिए भाजक लेआउट का पालन करना और Y के अनुसार परिणाम देनाटी, शायद ही कभी देखा जाता है क्योंकि यह बदसूरत सूत्रों के लिए बनाता है जो स्केलर सूत्रों के अनुरूप नहीं होते हैं। नतीजतन, निम्नलिखित लेआउट अक्सर पाए जा सकते हैं:
Consistent अंश लेआउट, जो बताता है वाई और के अनुसार एक्स के अनुसारटी</सुप>.
मिश्रित लेआउट, जो बताता है वाई और के अनुसार एक्स के अनुसार
नोटेशन का प्रयोग करें परिणामों के साथ संगत अंश लेआउट के समान।
निम्नलिखित सूत्रों में, हम पाँच संभावित संयोजनों को संभालते हैं और अलग से। हम स्केलर-बाय-स्केलर डेरिवेटिव के मामलों को भी संभालते हैं जिसमें मध्यवर्ती वेक्टर या मैट्रिक्स शामिल होता है। (यह उत्पन्न हो सकता है, उदाहरण के लिए, यदि बहु-आयामी पैरामीट्रिक वक्र को स्केलर चर के संदर्भ में परिभाषित किया गया है, और फिर वक्र के स्केलर फ़ंक्शन का व्युत्पन्न उस स्केलर के संबंध में लिया जाता है जो वक्र को पैरामीटर करता है।) प्रत्येक के लिए विभिन्न संयोजनों में, हम अंश-लेआउट और हर-लेआउट परिणाम देते हैं, ऊपर दिए गए मामलों को छोड़कर जहां डिनोमिनेटर लेआउट शायद ही कभी होता है। मैट्रिक्स से जुड़े मामलों में जहां यह समझ में आता है, हम अंश-लेआउट और मिश्रित-लेआउट परिणाम देते हैं। जैसा कि ऊपर उल्लेख किया गया है, ऐसे मामले जहां वेक्टर और मैट्रिक्स डिनॉमिनेटर ट्रांसपोज़ नोटेशन में लिखे गए हैं, वे न्यूमरेटर लेआउट के बराबर हैं, जिसमें ट्रांसपोज़ के बिना लिखे गए डिनोमिनेटर हैं।
ध्यान रखें कि विभिन्न लेखक विभिन्न प्रकार के डेरिवेटिव के लिए अंश और भाजक लेआउट के विभिन्न संयोजनों का उपयोग करते हैं, और इस बात की कोई गारंटी नहीं है कि लेखक सभी प्रकार के लिए अंश या भाजक लेआउट का लगातार उपयोग करेगा। उस विशेष प्रकार के डेरिवेटिव के लिए उपयोग किए गए लेआउट को निर्धारित करने के लिए स्रोत में उद्धृत सूत्रों के साथ नीचे दिए गए फ़ार्मुलों का मिलान करें, लेकिन सावधान रहें कि यह न मानें कि अन्य प्रकार के डेरिवेटिव आवश्यक रूप से उसी प्रकार के लेआउट का पालन करते हैं।
योग का अधिकतम या न्यूनतम पता लगाने के लिए समुच्चय (वेक्टर या मैट्रिक्स) भाजक के साथ डेरिवेटिव लेते समय, यह ध्यान में रखा जाना चाहिए कि अंश लेआउट का उपयोग करने से ऐसे परिणाम प्राप्त होंगे जो समुच्चय के संबंध में स्थानांतरित किए गए हैं। उदाहरण के लिए, मैट्रिक्स कैलकुलस का उपयोग करके बहुभिन्नरूपी सामान्य वितरण की अधिकतम संभावना का अनुमान लगाने के प्रयास में, यदि डोमेन k×1 कॉलम वेक्टर है, तो अंश लेआउट का उपयोग करने वाला परिणाम 1×k पंक्ति वेक्टर के रूप में होगा। इस प्रकार, या तो परिणामों को अंत में स्थानांतरित किया जाना चाहिए या भाजक लेआउट (या मिश्रित लेआउट) का उपयोग किया जाना चाहिए।
Result of differentiating various kinds of aggregates with other kinds of aggregates
निम्नलिखित परिभाषाएँ केवल अंश-लेआउट संकेतन में प्रदान की जाती हैं:
भाजक-लेआउट संकेतन
भाजक-लेआउट संकेतन का उपयोग करते हुए, हमारे पास:[2]
पहचान
जैसा कि ऊपर उल्लेख किया गया है, सामान्य तौर पर, अंश-लेआउट और भाजक-लेआउट नोटेशन के बीच स्विच करने पर संचालन के परिणाम स्थानांतरित हो जाएंगे।
नीचे दी गई सभी सर्वसमिकाओं को समझने में मदद के लिए, सबसे महत्वपूर्ण नियमों को ध्यान में रखें: श्रृंखला नियम, उत्पाद नियम और विभेदन में योग नियम। योग नियम सार्वभौमिक रूप से लागू होता है, और उत्पाद नियम नीचे दिए गए अधिकांश मामलों में लागू होता है, बशर्ते कि मैट्रिक्स उत्पादों का क्रम बनाए रखा जाए, क्योंकि मैट्रिक्स उत्पाद क्रमविनिमेय नहीं होते हैं। श्रृंखला नियम कुछ मामलों में लागू होता है, लेकिन दुर्भाग्य से मैट्रिक्स-बाय-स्केलर डेरिवेटिव या स्केलर-बाय-मैट्रिक्स डेरिवेटिव में लागू नहीं होता है (बाद वाले मामले में, ज्यादातर मैट्रिक्स पर लागू ट्रेस (रैखिक बीजगणित) ऑपरेटर शामिल होता है)। बाद के मामले में, उत्पाद नियम को सीधे तौर पर लागू नहीं किया जा सकता है, लेकिन अंतर पहचान का उपयोग करके समकक्ष को थोड़ा और काम किया जा सकता है।
निम्नलिखित पहचान निम्नलिखित सम्मेलनों को अपनाती हैं:
स्केलर, ए, बी, सी, डी, और ई के संबंध में स्थिर हैं, और स्केलर, यू, और वी एक्स, 'एक्स', या 'एक्स' में से किसी के कार्य हैं;
वैक्टर, 'ए', 'बी', 'सी', 'डी', और 'ई' के संबंध में स्थिर हैं, और वैक्टर, 'यू', और 'वी' एक्स में से के कार्य हैं, ' एक्स', या 'एक्स';
मैट्रिक्स, 'ए', 'बी', 'सी', 'डी', और 'ई' के संबंध में स्थिर हैं, और मैट्रिक्स, 'यू' और 'वी' एक्स, 'एक्स' में से के कार्य हैं ', या 'एक्स'।
वेक्टर-दर-वेक्टर पहचान
इसे सबसे पहले प्रस्तुत किया गया है क्योंकि वेक्टर-बाय-वेक्टर भेदभाव पर लागू होने वाले सभी ऑपरेशन सीधे वेक्टर-बाय-स्केलर या स्केलर-बाय-वेक्टर भेदभाव पर लागू होते हैं, बस अंश में उचित वेक्टर को कम करके या स्केलर में भाजक को कम करके।
Identities: vector-by-vector
Condition
Expression
Numerator layout, i.e. by y and xT
Denominator layout, i.e. by yT and x
a is not a function of x
A is not a function of x
A is not a function of x
a is not a function of x, u = u(x)
v = v(x), a is not a function of x
v = v(x), u = u(x)
A is not a function of x, u = u(x)
u = u(x), v = v(x)
u = u(x)
u = u(x)
स्केलर-बाय-वेक्टर पहचान
मौलिक पहचान मोटी काली रेखा के ऊपर रखी गई है।
Identities: scalar-by-vector
Condition
Expression
Numerator layout, i.e. by xT; result is row vector
Denominator layout, i.e. by x; result is column vector
नोट: वेक्टर-बाय-वेक्टर डेरिवेटिव वाले सूत्र और (जिनके आउटपुट मेट्रिसेस हैं) मान लें कि मेट्रिसेस को वेक्टर लेआउट के अनुरूप रखा गया है, यानी न्यूमरेटर-लेआउट मैट्रिक्स जब न्यूमरेटर-लेआउट वेक्टर और इसके विपरीत; अन्यथा, वेक्टर-दर-वेक्टर डेरिवेटिव को स्थानांतरित करें।
स्केलर-दर-मैट्रिक्स पहचान
ध्यान दें कि मैट्रिक्स के मैट्रिक्स-मूल्यवान कार्यों पर लागू होने पर स्केलर उत्पाद नियम और श्रृंखला नियम के सटीक समकक्ष मौजूद नहीं होते हैं। हालांकि, इस प्रकार का उत्पाद नियम अंतर रूप (नीचे देखें) पर लागू होता है, और यह ट्रेस (रैखिक बीजगणित) फ़ंक्शन को शामिल करने वाली कई पहचानों को प्राप्त करने का तरीका है, इस तथ्य के साथ संयुक्त है कि ट्रेस फ़ंक्शन ट्रांसपोज़िंग की अनुमति देता है और चक्रीय क्रमचय, यानी:
उदाहरण के लिए, गणना करने के लिए
इसलिए,
(अंकीय लेआउट)
(अंतिम चरण के लिए, #convert_differential_derivative अनुभाग देखें।)
i.e. mixed layout if denominator layout for X is being used.
a and b are not functions of X
a and b are not functions of X
a, b and C are not functions of X
a, b and C are not functions of X
U = U(X), V = V(X)
a is not a function of X, U = U(X)
g(X) is any polynomial with scalar coefficients, or any matrix function defined by an infinite polynomial series (e.g. eX, sin(X), cos(X), ln(X), etc. using a Taylor series); g(x) is the equivalent scalar function, g′(x) is its derivative, and g′(X) is the corresponding matrix function
A, X का फलन नहीं है, X गैर-वर्गाकार है, A सममित है
A, X का फलन नहीं है, X वर्गाकार नहीं है, A असममित नहीं है
मैट्रिक्स-बाय-स्केलर पहचान
Identities: matrix-by-scalar
Condition
Expression
Numerator layout, i.e. by Y
U = U(x)
A, B are not functions of x, U = U(x)
U = U(x), V = V(x)
U = U(x), V = V(x)
U = U(x), V = V(x)
U = U(x), V = V(x)
U = U(x)
U = U(x,y)
A is not a function of x, g(X) is any polynomial with scalar coefficients, or any matrix function defined by an infinite polynomial series (e.g. eX, sin(X), cos(X), ln(X), etc.); g(x) is the equivalent scalar function, g′(x) is its derivative, and g′(X) is the corresponding matrix function
A x का कोई फलन नहीं है, g(X) अदिश गुणांकों वाला कोई बहुपद है, या अनंत बहुपद श्रृंखला द्वारा परिभाषित कोई मैट्रिक्स फलन है (उदा.X, sin(X), cos(X), ln(X), आदि); g(x) समकक्ष स्केलर फ़ंक्शन है, g′(x) इसका व्युत्पन्न है, और g′</ big>(X) संबंधित मैट्रिक्स फ़ंक्शन है।
A x
का फलन नहीं है
विभेदक रूप में पहचान
डिफरेंशियल फॉर्म में काम करना और फिर वापस सामान्य डेरिवेटिव में बदलना आसान होता है। यह केवल अंश लेआउट का उपयोग करके अच्छी तरह से काम करता है। इन नियमों में, अदिश राशि है।
अंतिम पंक्ति में, क्रोनकर डेल्टा है और ऑर्थोगोनल प्रोजेक्शन ऑपरेटरों का सेट है जो 'एक्स' के के-वें ईजेनवेक्टर पर प्रोजेक्ट करता है।
'क्यू' मैट्रिक्स के ईजेनडीकंपोजीशन का मैट्रिक्स है#के मैट्रिक्स का ईजेनडीकंपोजीशन , और आइगेनवैल्यू हैं।
मैट्रिक्स फ़ंक्शन मैट्रिक्स का Eigedecomposition#कार्यात्मक कलन है द्वारा विकर्णीय मेट्रिसेस के लिए
कहाँ साथ .
सामान्य व्युत्पन्न रूप में परिवर्तित करने के लिए, पहले इसे निम्नलिखित प्रामाणिक रूपों में से में परिवर्तित करें, और फिर इन सर्वसमिकाओं का उपयोग करें:
Conversion from differential to derivative form[1]
Canonical differential form
Equivalent derivative form (numerator layout)
अनुप्रयोग
मैट्रिक्स डिफरेंशियल कैलकुलस का उपयोग सांख्यिकी और अर्थमिति में किया जाता है, विशेष रूप से बहुभिन्नरूपी वितरण के सांख्यिकीय विश्लेषण के लिए, विशेष रूप से बहुभिन्नरूपी सामान्य वितरण और अन्य अण्डाकार वितरण।[11][12][13]
इसका उपयोग प्रतिगमन विश्लेषण में गणना करने के लिए किया जाता है, उदाहरण के लिए, रैखिक कम से कम वर्ग (गणित) # एकाधिक व्याख्यात्मक चर के मामले के लिए सामान्य समस्या।[14]
इसका उपयोग स्थानीय संवेदनशीलता और सांख्यिकीय निदान में भी किया जाता है।[15]
Magnus, Jan; Neudecker, Heinz (2019). Matrix differential calculus with applications in statistics and econometrics. New York: John Wiley. ISBN9781119541202.
Abadir, Karim M., 1964- (2005). Matrix algebra. Magnus, Jan R. Cambridge: Cambridge University Press. ISBN978-0-511-64796-3. OCLC569411497.{{cite book}}: CS1 maint: multiple names: authors list (link)
Lax, Peter D. (2007). "9. Calculus of Vector- and Matrix-Valued Functions". Linear algebra and its applications (2nd ed.). Hoboken, N.J.: Wiley-Interscience. ISBN978-0-471-75156-4.
Magnus, Jan R. (October 2010). "On the concept of matrix derivative". Journal of Multivariate Analysis (in English). 101 (9): 2200–2206. doi:10.1016/j.jmva.2010.05.005.. Note that this Wikipedia article has been nearly completely revised from the version criticized in this article.
बाहरी संबंध
सॉफ्टवेयर
MatrixCalculus.org, सांकेतिक रूप से मैट्रिक्स कैलकुलस एक्सप्रेशंस के मूल्यांकन के लिए वेबसाइट
NCAlgebra, ओपन-सोर्स मेथेमेटिका पैकेज जिसमें कुछ मैट्रिक्स कैलकुलस कार्यक्षमता है