इलेक्ट्रान बन्धुता

From Vigyanwiki

किसी परमाणु या अणु की इलेक्ट्रॉन बंधुता (Eea) को तब जारी ऊर्जा की मात्रा के रूप में परिभाषित किया जाता है, जब एक इलेक्ट्रॉन गैसीय अवस्था में एक तटस्थ परमाणु या अणु से जुड़कर ऋणायन बनाता है।

X(g) + e → X(g) + energy

यह इलेक्ट्रॉन प्रग्रहण आयनीकरण के ऊर्जा परिवर्तन से संकेत द्वारा भिन्न होता है। जब इलेक्ट्रॉन ग्रहण करने पर ऊर्जा मुक्त होती है, तो इलेक्ट्रॉन बंधुता धनात्मक रूप में होती है।

ठोस अवस्था भौतिकी में किसी सतह के लिए इलेक्ट्रॉन बंधुता को कुछ अलग विधि से परिभाषित किया जाता है, इलेक्ट्रॉन आत्मीयता इलेक्ट्रॉन संबंध जैसा कि ठोस अवस्था भौतिकी में परिभाषित किया गया है।

इलेक्ट्रॉन बंधुता का मापन और उपयोग

इस गुण का उपयोग केवल गैसीय अवस्था में परमाणुओं और अणुओं को मापने के लिए किया जाता है, क्योंकि ठोस या तरल अवस्था में उनके ऊर्जा स्तर अन्य परमाणुओं या अणुओं के संपर्क से बदल जाते हैं।

इलेक्ट्रॉन समानता की एक सूची का उपयोग रॉबर्ट एस मुल्लिकेन द्वारा इलेक्ट्रॉनों के औसत के बराबर परमाणुओं के लिए वैद्युतीय ऋणात्मकता स्केल विकसित करने के लिए किया गया था।आत्मीयता और आयनीकरण क्षमता[1][2] इलेक्ट्रॉन बंधुता का उपयोग करने वाली अन्य सैद्धांतिक अवधारणाओं में इलेक्ट्रॉनिक रासायनिक क्षमता और रासायनिक कठोरता के रूप में सम्मलित होते है। एक अन्य उदाहरण, एक अणु या परमाणु जिसमें दूसरे की तुलना में इलेक्ट्रॉन संबंध का अधिक सकारात्मक मूल्य होता है, उसे अधिकांशतः इलेक्ट्रॉन स्वीकर्ता और कम सकारात्मक इलेक्ट्रॉन दाता कहा जाता है। एक साथ वे इंटरवलेंस चार्ज ट्रांसफर प्रतिक्रियाओं से गुजर सकते हैं।

साइन कन्वेंशन

इलेक्ट्रॉन बंधुता का ठीक से उपयोग करने के लिए, साइन का ट्रैक रखना आवश्यक होता है। किसी भी प्रतिक्रिया के लिए जो ऊर्जा रिलीज करती है, कुल ऊर्जा में ΔE परिवर्तन का नकारात्मक मान होता है और प्रतिक्रिया को उष्माक्षेपी प्रतिक्रिया कहा जाता है। लगभग सभी गैर- नॉबेल गैस परमाणुओं के लिए इलेक्ट्रॉन प्रग्रहण में ऊर्जा की रिलीज के रूप में सम्मलित होती है[3] और इस प्रकार एक्ज़ोथिर्मिक के रूप में होते है। सकारात्मक मान जो Eea की तालिकाओं में सूचीबद्ध रूप में राशियाँ या परिमाण हैं। यह परिभाषा के भीतर रिलीज किया गया शब्द है, जो ऊर्जा रिलीज करता है जो ΔE को नकारात्मक संकेत प्रदान करता है। Eea को भूलने से भ्रम उत्पन्न होता है, जो ऊर्जा में परिवर्तन के लिए ΔE, जिस स्थिति में सारणियों में सूचीबद्ध धनात्मक मान एंडो-नॉट एक्सो-थर्मिक प्रक्रिया के लिए होते है। दोनों के बीच संबंध Eea = −ΔE संलग्न के रूप में होते है।

चूँकि, यदि मान Eea को सौंपा गया ऋणात्मक रूप में होता है, तो ऋणात्मक चिन्ह का तात्पर्य दिशा के उलट होने से है और एक इलेक्ट्रॉन को संलग्न करने के लिए ऊर्जा की आवश्यकता होती है। इस स्थितियों में, इलेक्ट्रॉन प्रग्रहण एक एन्दोथर्मिक प्रक्रिया के रूप में है और संबंध, Eea = −ΔE संलग्न अभी भी मान्य है। ऋणात्मक मान सामान्यतः एक दूसरे इलेक्ट्रॉन पर कब्जा करने के लिए उत्पन्न होते हैं, लेकिन नाइट्रोजन परमाणु के लिए इस रूप में होते है।

Eea की गणना के लिए सामान्य अभिव्यक्ति जब एक इलेक्ट्रॉन जुड़ा होता है

Eea = (EinitialEfinal)attach = −ΔE(attach)

यह व्यंजक कन्वेन्शन का पालन करता है क्योंकि ΔX = X(final) − X(initial) since −ΔE = −(E(final) − E(initial)) = E(initial) − E(final).के रूप में होते है।

समान रूप से, इलेक्ट्रॉन आत्मीयता को परमाणु से एक इलेक्ट्रॉन को अलग करने के लिए आवश्यक ऊर्जा की मात्रा के रूप में परिभाषित किया जाता है, जबकि यह एक विद्युत आवेश रखता है| एकल अतिरिक्त इलेक्ट्रॉन इस प्रकार परमाणु को एक आयन बनाता है,[4] अर्थात प्रक्रिया के लिए ऊर्जा परिवर्तन इस रूप में होती है

X → X + e

यदि आगे और पीछे की प्रतिक्रियाओं के लिए एक ही टेबल का उपयोग किया जाता है, तो संकेतों को स्विच किए बिना, सही परिभाषा को संबंधित दिशा, अटैचमेंट रिलीज़ या डिटैचमेंट आवश्यक पर लागू करने के लिए ध्यान रखा जाना चाहिए। चूंकि लगभग सभी डिटेचमेंट आवश्यकता + तालिका में सूचीबद्ध ऊर्जा की मात्रा के रूप में होते है, वे डिटेचमेंट प्रतिक्रियाएं एंडोथर्मिक या ΔE (डिटैच)> 0 के रूप में होते है

Eea = (EfinalEinitial)detach = ΔE(detach) = −ΔE(attach).

तत्वों की इलेक्ट्रॉन बंधुता

इलेक्ट्रॉन बंधुता Eea बनाम परमाणु संख्या (जेड)। पिछले अनुभाग में हस्ताक्षर परिपाटी की व्याख्या पर ध्यान दें।

चूंकि Eea आवर्त सारणी में बहुत भिन्न रूप में होता है, कुछ पैटर्न उभर कर आते हैं। सामान्यतः, धातुओं की तुलना में अधातुओं में अधिक धनात्मक Eea होता है। ऐसे परमाणु जिनके आयन तटस्थ परमाणुओं की तुलना में अधिक स्थिर होते हैं, उनका Eea.अधिक होता है। क्लोरीन सबसे अधिक मजबूती से अतिरिक्त इलेक्ट्रॉनों को आकर्षित करता है; नियोन सबसे कमजोर रूप से एक अतिरिक्त इलेक्ट्रॉन को आकर्षित करता है। नोबल गैसों की इलेक्ट्रॉन बंधुता को निर्णायक रूप से नहीं मापा गया है, इसलिए उनका थोड़ा नकारात्मक मान हो सकता है या नहीं भी हो सकता है।

Eea सामान्यतः समूह 18 तक पहुँचने से पहले आवर्त सारणी में एक अवधि पंक्ति में वृद्धि होती है। यह परमाणु के संयोजी खोल के भरने के कारण होता है; एक हलोजन परमाणु एक इलेक्ट्रॉन प्राप्त करने पर समूह 1 तत्व के परमाणु की तुलना में अधिक ऊर्जा रिलीज करता है, क्योंकि यह एक भरा हुआ इलेक्ट्रॉन कवच प्राप्त करता है और इसलिए अधिक स्थिर रूप में होता है। समूह 18 में, वैलेंस शेल भरा हुआ है, जिसका अर्थ है कि जोड़े गए इलेक्ट्रॉन अस्थिर रूप में होते है, यह बहुत जल्दी बाहर निकलने की प्रवृत्ति रखते हैं।

विरोधाभासी रूप से, Eea आवर्त सारणी के अधिकांश स्तंभों में नीचे जाने पर घटता नहीं है। उदाहरण के लिए, Eea वास्तव में समूह 2 तत्व डेटा के लिए कॉलम अवरोही पर लगातार बढ़ता है। इस प्रकार, इलेक्ट्रॉन आत्मीयता वैद्युतीय ऋणात्मकता के समान बाएँ-दाएँ प्रवृत्ति का अनुसरण करती है, लेकिन ऊपर-नीचे की प्रवृत्ति का नहीं करती है।

निम्नलिखित डेटा केजे / एमओएल में उद्धृत किया गया है।

आणविक इलेक्ट्रॉन समानताएं

अणुओं की इलेक्ट्रॉन बंधुता उनकी इलेक्ट्रॉनिक संरचना का एक जटिल कार्य के रूप में होती है। उदाहरण के लिए, बेंजीन के लिए इलेक्ट्रॉन बंधुता नकारात्मक रूप में होती है, जैसा कि नेफ़थलीन की होती है, जबकि अंगारिन, फेनेंथ्रीन और पाइरीन की सकारात्मक रूप में होती है। सिलिको प्रयोगों से पता चलता है कि हेक्सासाइनोबेंजीन की इलेक्ट्रॉन बंधुता फुलरीन से अधिक होती है।[5]


इलेक्ट्रॉन बंधुता जैसा कि ठोस अवस्था भौतिकी में परिभाषित किया गया है

अर्धचालक -निर्वात इंटरफेस का बैंड आरेख इलेक्ट्रॉन एफिनिटी EEA दिखा रहा है, निकट-सतह निर्वात ऊर्जा Evac के बीच अंतर के रूप में परिभाषित किया गया है और निकट-सतह चालन बैंड एज EC. यह भी दिखाया गया है: फर्मी स्तर EF, संयोजी बंध एज EV, कार्य फलन डब्ल्यू के रूप में होते है।

ठोस अवस्था भौतिकी के क्षेत्र में, इलेक्ट्रॉन बंधुता को रसायन विज्ञान और परमाणु भौतिकी की तुलना में अलग तरह से परिभाषित किया जाता है। अर्धचालक -निर्वात इंटरफ़ेस के लिए,अर्थात् अर्धचालक इलेक्ट्रॉन इलेक्ट्रॉन संबंध की सतह को सामान्यतः EEA या χ, द्वारा दर्शाया जाता है, जिसे अर्धचालक के ठीक बाहर कंडक्टर बैंड के नीचे अर्धचालक के बाहर निर्वात से एक इलेक्ट्रॉन को स्थानांतरित करके प्राप्त ऊर्जा के रूप में परिभाषित किया जाता है।[6]

निरपेक्ष शून्य पर एक आंतरिक अर्धचालक में, यह अवधारणा कार्यात्मक रूप से इलेक्ट्रॉन आत्मीयता की रसायन विज्ञान की परिभाषा के अनुरूप होती है, क्योंकि एक जोड़ा इलेक्ट्रॉन अनायास चालन बैंड के नीचे जाता है। गैर-शून्य तापमान पर और अन्य सामग्रियों धातु, अर्ध-धातु, अत्यधिक अपमिश्रित अर्धचालक के लिए, सादृश्य धारण नहीं करता है क्योंकि एक जोड़ा इलेक्ट्रॉन इसके अतिरिक्त औसत रूप से फर्मी स्तर पर जाता है। किसी भी स्थिति में, एक ठोस पदार्थ के इलेक्ट्रॉन बन्धुता का मूल्य गैस चरण में एक ही पदार्थ के परमाणु के लिए रसायन विज्ञान और परमाणु भौतिकी इलेक्ट्रॉन बन्धुता मूल्य से बहुत भिन्न रूप में होता है। उदाहरण के लिए, एक सिलिकॉन क्रिस्टल सतह में इलेक्ट्रॉन बन्धुता 4.05 ईवी के रूप में होती है, जबकि एक पृथक सिलिकॉन परमाणु में इलेक्ट्रॉन बन्धुता 1.39 ईवी के रूप में होती है।

किसी सतह की इलेक्ट्रॉन बंधुता उसके कार्य फलन से निकटता से संबंधित होती है, लेकिन उससे भिन्न रूप में होती है। कार्य फलन थर्मोडायनामिक कार्य के रूप में होता है, जिसे सामग्री से निर्वात में एक इलेक्ट्रॉन को विपरीत रूप से और समतापीय रूप से हटाकर प्राप्त किया जा सकता है; यह थर्मोडायनामिक इलेक्ट्रॉन औसतन फ़र्मी स्तर पर जाता है, चालन बैंड किनारे पर नहीं होते है, . जबकि एक अर्धचालक के कार्य फलन को डोपिंग (अर्धचालक ) द्वारा बदला जा सकता है, इलेक्ट्रॉन संबंध आदर्श रूप से डोपिंग के साथ नहीं बदलता है और इसलिए यह भौतिक स्थिरांक होने के करीब होता है। चूंकि, कार्य फलन की तरह इलेक्ट्रॉन संबंध सतह समाप्ति क्रिस्टल फेसेस, सतह रसायन, आदि पर निर्भर करता है और यह सख्ती से सतह की गुणधर्म के रूप में होते है।

अर्धचालक भौतिकी में, इलेक्ट्रॉन बंधुता का प्राथमिक उपयोग वास्तव में अर्धचालक निर्वात सतहों के विश्लेषण में नहीं होते है। बल्कि दो सामग्रियों के इंटरफेस पर होने वाले बैंड झुकना का अनुमान लगाने के लिए ह्यूरिस्टिक इलेक्ट्रॉन बंधुता नियम में होता है, विशेष रूप से धातु-अर्धचालक जंक्शनों में और अर्धचालक विषमताएँ होती है।

कुछ परिस्थितियों में इलेक्ट्रॉन बंधुता ऋणात्मक हो सकती है।[7] अधिकांशतः नकारात्मक इलेक्ट्रॉन संबंध कुशल कैथोड प्राप्त करने के लिए वांछित रूप में होते हैं, जो कम ऊर्जा हानि के साथ निर्वात को इलेक्ट्रॉनों की आपूर्ति कर सकते हैं। पूर्वाग्रह वोल्टेज या रोशनी की स्थिति जैसे विभिन्न मापदंडों के एक फलन के रूप में देखी जाती है इलेक्ट्रॉन का उपयोग इन संरचनाओं को बैंड आरेखों के साथ वर्णित करने के लिए किया जाता है, जिसमें इलेक्ट्रॉन आत्मीयता एक पैरामीटर के रूप में होते है। इलेक्ट्रॉन उत्सर्जन पर सतह समाप्ति के स्पष्ट प्रभाव के एक उदाहरण के लिए, मार्च्यवका प्रभाव में चित्र 3 को देख सकते है ।

यह भी देखें

संदर्भ

  1. Robert S. Mulliken, Journal of Chemical Physics, 1934, 2, 782.
  2. Modern Physical Organic Chemistry, Eric V. Anslyn and Dennis A. Dougherty, University Science Books, 2006, ISBN 978-1-891389-31-3
  3. Chemical Principles the Quest for Insight, Peter Atkins and Loretta Jones, Freeman, New York, 2010 ISBN 978-1-4292-1955-6
  4. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Electron affinity". doi:10.1351/goldbook.E01977
  5. Remarkable electron accepting properties of the simplest benzenoid cyanocarbons: hexacyanobenzene, octacyanonaphthalene and decacyanoanthracene Xiuhui Zhang, Qianshu Li, Justin B. Ingels, Andrew C. Simmonett, Steven E. Wheeler, Yaoming Xie, R. Bruce King, Henry F. Schaefer III and F. Albert Cotton Chemical Communications, 2006, 758–760 Abstract
  6. Tung, Raymond T. "सेमीकंडक्टर की मुक्त सतहें". Brooklyn College.
  7. Himpsel, F.; Knapp, J.; Vanvechten, J.; Eastman, D. (1979). "Quantum photoyield of diamond(111)—A stable negative-affinity emitter". Physical Review B. 20 (2): 624. Bibcode:1979PhRvB..20..624H. doi:10.1103/PhysRevB.20.624.


बाहरी संबंध