संरचनात्मक यांत्रिकी में परिमित तत्व विधि

From Vigyanwiki
Revision as of 15:17, 11 April 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

परिमित तत्व विधि मूल रूप से संरचनात्मक यांत्रिकी में जटिल समस्याओं के संख्यात्मक समाधान के लिए विकसित एक प्रभावशाली तकनीक है, और यह जटिल प्रणालियों के लिए उपयुक्त विधि मानी जाती है। परिमित तत्व विधि में, संरचनात्मक प्रतिरूप को उचित परिमित तत्वों के एक समुच्चय द्वारा निर्मित किया जाता है जो भिन्न-भिन्न बिंदुओं, जिन्हें दूसरे शब्दों में नोड्स कहा जाता है, पर युग्मित होते हैं। परिमित तत्वों में भौतिक गुण जैसे मोटाई, तापीय विस्तार का गुणांक, घनत्व, यंग का मापांक, कतरनी मापांक और पॉइसन का अनुपात आदि हो सकते हैं ।

इतिहास

परिमित विधि की उत्पत्ति संरचनाओं के आव्यूह विश्लेषण द्रारा चिन्हित की जा सकती है जहां एक विस्थापन या कठोरता आव्यूह प्रस्ताव की एक अवधारणा प्रस्तुत की गई थी। 1950 के दशक में अभियांत्रिकी विधियों के आधार पर परिमित तत्व अवधारणाएँ विकसित की गईं। परिमित तत्व पद्धति ने 1960 और 1970 के दशक में जॉन आरगाईरिस और सहकर्मियों द्वारा अपनी वास्तविक प्रेरणा प्राप्त की; जैसे रे डब्ल्यू क्लो द्वारा स्टटगार्ट विश्वविद्यालय में; कैलिफोर्निया विश्वविद्यालय, बर्कले में, ओल्गिएर्ड ज़िएनक्यूविज़ द्वारा, और सहकर्मी अर्नेस्ट हिंटन, ब्रूस आयरन्स [1] फिलिप जी सियारलेट द्वारा स्वानसी विश्वविद्यालय में; पियरे-एंड-मैरी-क्यूरी विश्वविद्यालय में; कॉर्नेल विश्वविद्यालय में, रिचर्ड गैलाघेर और सहकर्मियों द्वारा इत्यादि। मूल कृतियाँ जैसे कि आरगाईरिस [2] और क्लो [3] के कार्य आज के परिमित तत्व संरचनात्मक विश्लेषण विधियों का आधार बन गए।

अक्षीय, झुकने और मरोड़ वाली कठोरता जैसे भौतिक गुणों वाले सीधे या घुमावदार एक-आयामी तत्व होते है। इस प्रकार के तत्व प्रतिरूपण तार, दँतपट्टिका, ट्रस, बीम, दृढ़क, ग्रिड और ढांचे के लिए उपयुक्त है। प्रत्येक छोर पर सामान्यतः दो नोड होते हैं, जबकि घुमावदार तत्वों को अंत-नोड्स सहित कम से कम तीन नोड्स की आवश्यकता होती है । तत्व वास्तविक सदस्यों के केन्द्रक अक्ष पर स्थित होते हैं।

  • द्वि-आयामी तत्व जो केवल झिल्ली क्रिया जैसे समतल तनाव या समतल विकृति द्वारा अंतस्तल बलों का विरोध करते हैं, और प्लेटें जो अनुप्रस्थ कतरनी और झुकने की क्रिया द्वारा अनुप्रस्थ भार का विरोध करती हैं। तथा उनके पास कई प्रकार के आकार हो सकते हैं जैसे समतल या घूर्णित त्रिकोण और चतुर्भुज। नोड्स को सामान्यतः तत्व के कोनों पर रखा जाता है, और यदि उच्च सटीकता के लिए आवश्यक हो, तो अतिरिक्त बिन्दु को तत्व किनारों के साथ या तत्व के भीतर भी रखा जा सकता है। तत्व वास्तविक परत मोटाई की मध्य-सतह पर स्थित होते हैं।
  • झिल्लियों, मोटी प्लेटों, आवरणों और ठोसों जैसी अक्षीय समस्याओं के लिए टोरस के आकार के तत्व होते है। इन तत्वों का अन्तः वर्ग पहले वर्णित प्रकारों के समान है इस प्रकार पतली प्लेटों और गोले के लिए एक आयामी, और ठोस, मोटी प्लेटों और गोले के लिए द्वि-आयामी तत्व होते है ।
  • 3-डी ठोस जैसे यंत्र घटकों, बांधों, तटबंध परिवहन या मिट्टी के द्रव्यमान प्रतिरूपण के लिए त्रि-आयामी तत्व का प्रयोग किया जाता है। सरल तत्व आकृतियों में चतुष्फलकीय और षट्फलकीय तत्व सम्मिलित हैं। नोड्स को शीर्ष और संभवतः तत्व के फलकों या तत्व के भीतर रखा जाता है।

तत्व अंतर्संबंध और विस्थापन

तत्व केवल बाह्य नोड्स पर परस्पर जुड़े हुए होते हैं, और कुल मिलाकर उन्हें सम्पूर्ण क्षेत्र को यथासंभव उपयुक्त रूप से समाविष्ट करना चाहिए। नोड्स में सदिस नोडल विस्थापन या स्वतंत्रता की श्रेणी होगी जिसमें परिवर्तन, घूर्णन और विशेष अनुप्रयोगों के लिए विस्थापन के उच्च क्रम यौगिक सम्मिलित हो सकते हैं। जब नोड्स विस्थापित होते हैं, तो वे तत्वों को एक निश्चित विधि से साथ खींचेंगे जो तत्व निर्माण द्वारा निर्धारित होते हैं। दूसरे शब्दों में, तत्व में किसी भी बिंदु के विस्थापन को नोडल विस्थापन से प्रक्षेपित किया जाएगा, और यह समाधान की अनुमानित प्रकृति का मुख्य कारण है।

व्यावहारिक विचार

अनुप्रयोग के दृष्टिकोण से, प्रतिरूप को इस तरह से प्रारूप करना महत्वपूर्ण है, जिससे :

  • प्रतिरूप के आकार को कम करने के लिए समरूपता या विरोधी समरूपता स्थितियों का उपयोग किया जाता है।
  • विस्थापन संगतता, किसी भी आवश्यक असतता सहित, नोड्स पर सुनिश्चित की जाती है, और अधिमानतः, तत्व किनारों के साथ-साथ, विशेष रूप से जब आसन्न तत्व विभिन्न प्रकार, सामग्री या मोटाई के होते हैं तो कई नोड्स के विस्थापन की संगतता सामान्यतः बाधा संबंधों के माध्यम से निर्मित की जा सकती है।
  • तत्वों के व्यवहार को स्थानीय और विश्व स्तर पर वास्तविक प्रतिरूप के प्रमुख कार्यों को समर्थित करना होता है।
  • स्वीकार्य उपयुक्तता उत्पन्न करने के लिए तत्व जाल पर्याप्त रूप से सुदृढ़ होने चाहिए। उपयुक्तता का आकलन करने के लिए, जाल को तब तक परिष्कृत किया जाता है जब तक कि महत्वपूर्ण परिणाम या कुछ परिवर्तन नहीं दिखाते। उच्च उपयुक्तता के लिए, तत्वों का मापदंड अनुपात यथासंभव उसके उपयुक्त होता है, और छोटे तत्वों का उपयोग उच्च प्रतिबल प्रवणता के भागों पर किया जाता है।
  • समरूपता अक्षो के नोड्स पर विशेष ध्यान देने के साथ उचित समर्थन बाधाएं लगाई जाती हैं।

बड़े मानदंडों पर वाणिज्यिक सॉफ्टवेयर का संकुल प्रायः जाल उत्पन्न करने और निविस्ट और निर्गत तत्वों के चित्रमय प्रदर्शन की सुविधा प्रदान करते हैं, जो निविस्ट डेटा और परिणामों की व्याख्या और दोनों के सत्यापन की सुविधा प्रदान करते हैं।

परिमित तत्व विधि-विस्थापन सूत्रीकरण का सैद्धांतिक अवलोकन: तत्वों से, प्रतिरूप समाधान तक

जबकि परिमित तत्व विधि के सिद्धांत को भिन्न-भिन्न दृष्टिकोण या महत्व में प्रस्तुत किया जा सकता है, संरचनात्मक विश्लेषण के लिए इसका विकास आभासी कार्य सिद्धांत या न्यूनतम सम्पूर्ण संभावित ऊर्जा सिद्धांत के माध्यम से अधिक पारंपरिक प्रस्तावों का अनुसरण करता है। आभासी कार्य सिद्धांत प्रस्ताव अधिक सामान्य है क्योंकि यह रैखिक और गैर-रैखिक भौतिक व्यवहार दोनों पर लागू होता है। आभासी कार्य पद्धति ऊर्जा के संरक्षण की एक अभिव्यक्ति है: रूढ़िवादी प्रणालियों के लिए, लागू बलों के एक समुच्चय द्वारा प्रतिरूप में जोड़ा गया और कार्य संरचना के घटकों के प्रतिबल ऊर्जा के रूप में प्रतिरूप में संग्रहीत ऊर्जा के समान होता है।

संरचनात्मक प्रतिरूप के लिए आभासी कार्य का सिद्धांत बाह्य और आंतरिक आभासी कार्य की गणितीय पहचान को व्यक्त करता है:

 

 

 

 

(1)

दूसरे शब्दों में, बाह्य बलों के समुच्चय द्वारा तंत्र पर किए गए कार्य का योग तंत्र को निर्मित करने वाले तत्वों में तनाव ऊर्जा के रूप में संग्रहीत कार्य के समान होता है।

उपरोक्त समीकरण के दाईं ओर के आभासी आंतरिक कार्य को भिन्न-भिन्न तत्वों पर किए गए आभासी कार्य का योग करके प्राप्त किया जा सकता है। उत्तरार्द्ध की आवश्यकता है कि बल-विस्थापन कार्यों का उपयोग किया जाए जो प्रत्येक व्यक्तिगत तत्व के लिए प्रतिक्रिया का वर्णन करता है। इसलिए, संरचना के विस्थापन को सामूहिक रूप से असतत तत्वों की प्रतिक्रिया से वर्णित किया गया है। समीकरण मात्र एक समीकरण के अतिरिक्त संरचना के भिन्न-भिन्न तत्वों के छोटे क्षेत्र के लिए लिखे गए हैं जो पूरे प्रतिरूप के रूप में प्रतिक्रिया का वर्णन करता है। उत्तरार्द्ध के परिणामस्वरूप एक जटिल समस्या उत्पन्न होगी, इसलिए परिमित तत्व विधि की उपयोगिता है, जैसा कि बाद के अनुभागों में दिखाया गया है, Eq.(1) प्रतिरूप के लिए निम्नलिखित शासी संतुलन समीकरण की पुष्टि करता है:

 

 

 

 

(2)

जहाँ

= नोडल बलों का सदिश , प्रतिरूप के नोड्स पर लागू बाह्य बलों का प्रतिनिधित्व करता है।
= प्रतिरूप कठोरता आव्यूह, जो भिन्न-भिन्न तत्वों की कठोरता आव्यूह का सामूहिक प्रभाव है:.
= प्रतिरूप के नोडल विस्थापन का सदिश।
= समतुल्य नोडल बलों के सदिश , नोडल बलों के अतिरिक्त अन्य सभी बाह्य प्रभावों का प्रतिनिधित्व करते हैं जो पूर्ववर्ती नोडल बल सदिश आर में सम्मिलित हैं। इन बाह्य प्रभावों में वितरित या केंद्रित सतह बल, भौतिक बल, तापीय प्रभाव, प्रारंभिक तनाव सम्मिलित हो सकते हैं।

प्रतीकात्मक रूप से एक बार समर्थन की बाधाओं के लिए उत्तरदायी होने के उपरांत, रैखिक समीकरणों की प्रतिरूप को हल करके नोडल विस्थापन प्राप्त किया जाता है

 

 

 

 

(3)

इसके उपरांत, भिन्न-भिन्न तत्वों में तनाव निम्नानुसार प्राप्त किया जा सकता है:

 

 

 

 

(4)

 

 

 

 

(5)

जहाँ

= एक नोडल विस्थापन का सदिश - प्रतिरूप विस्थापन सदिश आर का एक उपसमुच्चय जो विचाराधीन तत्वों से संबंधित है।
= तनाव-विस्थापन आव्यूह जो तत्व में किसी भी बिंदु पर नोडल विस्थापन क्यू को उपभेदों में परिवर्तित कर देता है।
= लोच आव्यूह जो प्रभावी उपभेदों को तत्व में किसी भी बिंदु पर तनाव में परिवर्तित कर देता है।
= तत्वों में प्रारंभिक उपभेदों का सदिश है।
= तत्वों में प्रारंभिक तनाव का सदिश है।

आभासी कार्य समीकरण को लागू करने से प्रतिरूप (1) के लिए, हम तत्व आव्यूह स्थापित कर सकते हैं जहां , के साथ प्रतिरूप आव्यूहों और . को समन्वायोजन करने की तकनीक है। अन्य आव्यूहों जैसे , , और ज्ञात मूल्य हैं और इन्हें सीधे डेटा निविष्ट से समायोजित किया जा सकता है।

प्रक्षेप या आकृति कार्य

मान लीजिए की एक विशिष्ट तत्व के नोडल विस्थापन का सदिश है। तत्व के किसी भी अन्य बिंदु पर विस्थापन प्रक्षेप कार्यों के उपयोग से प्रतीकात्मक रूप से प्राप्त किया जा सकता है:

 

 

 

 

(6)

जहाँ

= तत्व के किसी बिंदु {x, y, z} पर विस्थापन का सदिश है।
= प्रक्षेप कार्यों के रूप में कार्य करने वाले आकृति कार्यों का आव्यूह है।

समीकरण (6) अन्य मात्राओं को उत्पन्न करता है:

आभासी विस्थापन जो आभासी नोडल विस्थापन का एक कार्य है:

  •  

     

     

     

    (6b)

  • तत्वों में तनाव जो तत्व के नोड्स के विस्थापन से उत्पन्न होते हैं:

     

     

     

     

    (7)

    जहाँ = तनाव-विस्थापन संबंधो का आव्यूह है जो विस्थापन को रैखिक लोच सिद्धांत का उपयोग करके तनाव में परिवर्तित करता है। समीकरण (7) से पता चलता है कि आव्यूह बी में समीकरण (4) उपस्थित है

     

     

     

     

    (8)

  • तत्व के आभासी नोडल विस्थापन के अनुरूप आभासी तनाव:

     

     

     

     

    (9)

    मात्रा के एक विशिष्ट तत्व के लिए , आभासी विस्थापन के कारण आंतरिक आभासी कार्य (5) और (9) में (1) के प्रतिस्थापन द्वारा प्राप्त किया जाता है:

     

     

     

     

    (10)

    तत्व आव्यूह

    मुख्य रूप से संदर्भ की सुविधा के लिए, विशिष्ट तत्वों से संबंधित निम्नलिखित आव्यूह को अब परिभाषित किया जा सकता है:

    तत्व कठोरता आव्यूह

     

     

     

     

    (11)

    समतुल्य तत्व भार सदिश

     

     

     

     

    (12)

    संख्यात्मक एकीकरण के लिए गॉसियन चतुर्भुज का उपयोग करके सामान्यतः इन आव्यूहों का संख्यात्मक रूप से मूल्यांकन किया जाता है। उनका उपयोग निम्नलिखित समीकरणों को सरल करता है (10)

     

     

     

     

    (13)

    प्रतिरूप नोडल विस्थापन के संदर्भ में तत्व आभासी कार्य

    चूंकि नोडल विस्थापन सदिश क्यू , प्रतिरूप नोडल विस्थापन आर का एक उपसमुच्चय है, हम नए खंड और शून्य की पंक्तियों के साथ तत्व आव्यूह के आकार का विस्तार करके क्यू को आर से परिवर्तित कर सकते हैं:

     

     

     

     

    (14)

    जहां, सरलता हेतु, हम तत्व आव्यूहों के लिए उन्हीं प्रतीकों का उपयोग करते हैं, जिनका आकार अब विस्तारित हो गया है और साथ ही पंक्तियों और स्तंभों को उचित रूप से पुनर्व्यवस्थित किया गया है।

    प्रणाली आभासी कार्य

    सभी तत्वों के लिए आंतरिक आभासी कार्य (14) को समायोजित करने से (1) का दाहिना भाग मिलता है:

     

     

     

     

    (15)

    अब (1) के बायीं ओर को ध्यान में रखते हुए, प्रतिरूप बाह्य आभासी कार्य में निम्न सम्मिलित हैं:



  • नोडल बलों R द्वारा किया गया कार्य:

     

     

     

     

    (16)

  • तत्वों के किनारों या सतहों के भाग पर बाहरी बलों द्वारा किया गया कार्य और भौतिक बलों द्वारा किया गया कार्य;
    का प्रतिस्थापन (6b) देता है:
    या

     

     

     

     

    (17a)

    जहां हमने नीचे परिभाषित अतिरिक्त तत्व के आव्यूह प्रस्तुत किए हैं:

     

     

     

     

    (18a)

     

     

     

     

    (18b)

     

     

     

     

    (17b)

    पुनः,संख्यात्मक एकीकरण उनके मूल्यांकन के लिए सुविधाजनक है। क्यू का एक समान प्रतिस्थापन (17a) के साथ r सदिशों को पुनर्व्यवस्थित और विस्तारित करने के बाद देता है :

     

     

     

     

    (17b)

    प्रतिरूप आव्यूहों की समन्वायोजन

    (16), (17b) को जोड़ने और योग को (15) के समान करने पर: (15) देता है:

  • चूंकि आभासी विस्थापन यादृच्छिक है, पूर्ववर्ती समानता कम हो जाती है: इसके साथ तुलना (2) पता चलता है कि:
    • प्रतिरूप कठोरता आव्यूह तत्वों की कठोरता आव्यूह को जोड़कर प्राप्त की जाती है:
    • समतुल्य नोडल बलों का सदिश तत्वों के भार को जोड़कर प्राप्त किया जाता है:
    व्यवहार में, तत्व आव्यूह न तो विस्तारित होते हैं और न ही पुनर्व्यवस्थित होते हैं। इसके अतिरिक्त, प्रतिरूप कठोरता आव्यूह भिन्न-भिन्न गुणांक को से जोड़कर एकत्रित किया जाता है जहां सबस्क्रिप्ट ij, kl का अर्थ है कि तत्व का नोडल विस्थापन प्रतिरूप के नोडल विस्थापन के साथ क्रमशः समान हैं। इसी प्रकार, भिन्न-भिन्न गुणांक को से जोड़कर एकत्रित किया जाता है जहाँ , के समान है। में का सीधा जोड़ प्रक्रिया को प्रत्यक्ष कठोरता विधि का नाम देता है।

    यह भी देखें

    संदर्भ

    1. Hinton, Ernest; Irons, Bruce (July 1968). "कम से कम वर्ग परिमित तत्वों का उपयोग करके प्रायोगिक डेटा को चौरसाई करना". Strain. 4 (3): 24–27. doi:10.1111/j.1475-1305.1968.tb01368.x.
    2. Argyris, J.H and Kelsey, S. Energy theorems and Structural Analysis Butterworth Scientific publications, London, 1954
    3. Clough, R.W, “The Finite Element in Plane Stress Analysis.” Proceedings, 2nd ASCE Conference on Electronic Computations, Pittsburgh, Sep 1960