अनुमानक का पूर्वाग्रह

From Vigyanwiki
Revision as of 23:19, 27 March 2023 by alpha>SprashM

इस विषय के व्यापक सूचना के लिए, अभिनति (सांख्यिकी) देखें।

सांख्यिकी में, अनुमानक (या अभिनति फलन) का अभिनति इस अनुमानक के अपेक्षित मान और अनुमानित पैरामीटर के वास्तविक मान के बीच का अंतर है। शून्य अभिनति वाला अनुमानक या निर्णय नियम अनभिनत कहलाता है। सांख्यिकी में, "अभिनति" एक अनुमानक की एक वस्तुगत गुण है। अभिनति संगति से एक अलग अवधारणा है: सुसंगत अनुमानक संभाव्यता में पैरामीटर के वास्तविक मान में अभिसरण करते हैं, लेकिन अभिनतपूर्ण या अनभिनत हो सकते हैं; अधिक जानकारी के लिए अभिनति बनाम निरंतरता देखें।

अन्य सभी समान होने के कारण, अनभिनत अनुमानक अभिनति अनुमानक के लिए अधिकतम है, हालांकि व्यवहार में, अभिनति अनुमानक (सामान्य रूप से छोटे अभिनति के साथ) प्रायः उपयोग किए जाते हैं। जब अभिनति अनुमानक का उपयोग किया जाता है, तो अभिनति की सीमा की गणना की जाती है। अभिनति अनुमानक का उपयोग विभिन्न कारणों से किया जा सकता है: क्योंकि जनसंख्या के बारे में और धारणाओं के बिना अनभिनत अनुमानक सम्मिलित नहीं है; क्योंकि एक अनुमानक की गणना करना कठिन है (मानक विचलन के अनभिनत अनुमान के रूप में); क्योंकि केंद्रीय प्रवृत्ति के विभिन्न समाधानों के संबंध में अभिनति अनुमानक अनभिनत हो सकता है; क्योंकि एक पक्षपाती अनुमानक निष्पक्ष अनुमानकों (विशेष रूप से अवमूल्यन अनुमानक में) की तुलना में कुछ हानि फलन (विशेष रूप से औसत वर्ग त्रुटि) का कम मान देता है; या क्योंकि कुछ स्थितियों में अनभिनत होना बहुत प्रबल स्थिति है, और केवल अनभिनत अनुमानक उपयोगी नहीं होते हैं।

अभिनति को औसत (अपेक्षित मान) के अतिरिक्त माध्यिका के संबंध में भी मापा जा सकता है, इस स्थिति में सामान्य औसत-निष्पक्षता गुण से औसत-निष्पक्षता को अलग करता है। गैर-रैखिक डेटा परिवर्तन (सांख्यिकी) के अंतर्गत माध्य-निष्पक्षता संरक्षित नहीं है, हालांकि औसत-निष्पक्षता है (देखें § रूपांतरणों का प्रभाव); उदाहरण के लिए, प्रतिदर्श प्रसरण जनसंख्या विचरण के लिए अभिनति अनुमानक है। ये सभी नीचे सचित्र हैं।

परिभाषा

मान लीजिए कि हमारे पास एक सांख्यिकीय मॉडल है, जिसे वास्तविक संख्या θ द्वारा परिचालित किया गया है, जो देखे गए डेटा , के लिए प्रायिकता बंटन को उत्पन्न करता है और एक आँकड़ा जो किसी भी देखे गए डेटा के आधार पर θ के अनुमानक के रूप में कार्य करता है अर्थात्, हम मानते हैं कि हमारा डेटा किसी अज्ञात बंटन का अनुसरण करता है (जहां θ एक निश्चित, अज्ञात स्थिरांक है जो इस बंटन का हिस्सा है), और फिर हम कुछ अनुमानक का निर्माण करते हैं मानचित्रों ने डेटा को उन मानों पर देखा जो हम आशा करते हैं कि वे θ के समीप हैं। का 'अभिनति' के सापेक्ष परिभाषित किया जाता है[1]

जहाँ बंटन पर अपेक्षित मान दर्शाता है (अर्थात, सभी संभावित अवलोकनों का औसत ) दूसरा समीकरण अनुसरण करता है क्योंकि θ सशर्त वितरण के संबंध में मापने योग्य है

अनुमानक को अनभिनत कहा जाता है यदि इसका अभिनति पैरामीटर θ के सभी मानों के लिए शून्य के बराबर है, या समतुल्य है, यदि अनुमानक का अपेक्षित मान पैरामीटर के समान होता है।[2]

अनुमानक के गुणों से संबंधित अनुकरण प्रयोग में, अनुमानित अंतर का उपयोग करके अनुमानक के अभिनति का आकलन किया जा सकता है।

उदाहरण

प्रतिदर्श विचरण

यादृच्छिक चर का प्रतिदर्श प्रसरण अनुमानक अभिनति के दो स्वरूप को प्रदर्शित करता है: सबसे पहले, सहज अनुमानक अभिनति है, जिसे मापन कारक द्वारा सही किया जा सकता है; दूसरा, अनभिनत अनुमानक माध्य औसत वर्ग त्रुटि (एमएसई) के स्थिति में इष्टतम नहीं है, जिसे एक अलग पैमाने के कारक का उपयोग करके कम किया जा सकता है, जिसके परिणामस्वरूप अनभिनत अनुमानक की तुलना में कम एमएसई वाला अभिनति अनुमानक होता है। मूर्त रूप से, सामान्य अनुमानक औसत वर्ग विचलन का योग करते हैं और n से विभाजित होते हैं, जो अभिनति है। इसके अतिरिक्त n − 1 से विभाजित करने पर अनभिनत अनुमानक प्राप्त होता है। इसके विपरीत, माध्य औसत वर्ग त्रुटि को एक अलग संख्या (बंटन के आधार पर) से विभाजित करके कम किया जा सकता है, लेकिन इसका परिणाम अभिनति अनुमानक होता है। यह संख्या सदैव n − 1 से बड़ी होती है, इसलिए इसे अवमूल्यन अनुमानक के रूप में जाना जाता है, क्योंकि यह अनभिनत अनुमानक को शून्य की ओर अधिसंकुचन है; सामान्य बंटन के लिए इष्टतम मान n + 1 है।

मान लीजिए कि X1, ..., Xn स्वतंत्र हैं और समान रूप से वितरित (i.i.d.) यादृच्छिक चर हैं जिनकी अपेक्षा μ और विचरण σ2 है। यदि प्रतिदर्श माध्य और असंशोधित प्रतिदर्श प्रसरण को इस प्रकार परिभाषित किया गया है

तब S2 σ2 का अभिनति अनुमानक है, क्योंकि