मोनोटोन संभावना अनुपात

From Vigyanwiki
वितरण में संभावना अनुपात और उपरोक्त संभाव्यता घनत्व फलन का अनुपात पैरामीटर में बढ़ रहा है, इसलिए मोनोटोन संभावना अनुपात गुण को संतुष्ट करता है।
MLRP-illustration.png

सांख्यिकी में, मोनोटोन संभावना अनुपात गुण दो संभाव्यता घनत्व कार्यों के अनुपात की गुण है। औपचारिक रूप से, वितरण ƒ(x) और g(x) गुण धारण करते हैं यदि

अर्थात, तर्क में अनुपात कम नहीं होता है।

यदि कार्य भिन्न-भिन्न हैं, तो गुण को कभी-कभी कहा जा सकता है।

दो वितरणों के लिए जो कुछ तर्क x के संबंध में परिभाषा को संतुष्ट करते हैं, उनके पास x में एमएलआर है। वितरण के सदस्य के लिए जो सभी कुछ आंकड़े T(X) के संबंध में परिभाषा को पूर्ण करते हैं, अतः उनके पास T(X) में एमएलआर है।

अंतर्ज्ञान

एमएलआर का उपयोग डेटा-जनरेटिंग प्रक्रिया का प्रतिनिधित्व करने के लिए किया जाता है जो कुछ प्रेक्षित चर के परिमाण और इसके द्वारा प्राप्त वितरण के मध्य सरलता से संबंध स्थापित करता है। यदि के संबंध में एमएलआर को संतुष्ट करता है तो प्रेक्षित संख्या जितनी अधिक होगी उतनी ही अधिक संभावना वितरण से खींची गई के अतिरिक्त होता है। मोनोटोनिक संबंधों के लिए संभावना अनुपात आँकड़ों में कार्य करती है, विशेषकर जब अधिकतम संभावना अनुमान का उपयोग किया जाता है। इसके अतिरिक्त, एमएलआर वाले वितरण सदस्यों में कई उत्तम स्टोचैस्टिक गुण होते हैं, जैसे प्रथम-क्रम स्टोकेस्टिक प्रभुत्व और बढ़ते संकट अनुपात है। जैसा कि सदैव होता है, इस धारणा का बल यथार्थवाद के मूल्य पर प्राप्त होती है। विश्व में कई प्रक्रियाएं इनपुट और आउटपुट के मध्य मोनोटोनिक पत्राचार प्रदर्शित नहीं करती हैं।

उदाहरण: जटिल परिश्रम करना या अकर्मण्य होना

विचार कीजिए कि आप किसी योजना पर कार्य कर रहे हैं, और तो आप जटिल परिश्रम कर सकते हैं या अकर्मण्य हो सकते हैं। अपनी रुचि के प्रयास और परिणामी परियोजना की गुणवत्ता है, यदि एमएलआरपी आपके प्रयास के वितरण के लिए है , गुणवत्ता q जितनी अधिक होगी, आपके द्वारा जटिल परिश्रम करने की संभावना उतनी ही अधिक होगी। इसके विपरीत, गुणवत्ता जितनी कम होगी, आपके अकर्मण्य होने की संभावना अधिक होगी।

  1. प्रयास जहां H का तात्पर्य उच्च और L का तात्पर्य निम्न है
  2. अवलोकन से खींचा बेयस के कानून द्वारा समान पूर्व के साथ,
    है ।
  3. कल्पना एमएलआरपी को संतुष्ट करता है। पुनर्व्यवस्थित करने पर, कार्यकर्ता द्वारा कठिन परिश्रम करने की प्रायिकता
है ।
जो, एमएलआरपी के लिए नीरस रूप से बढ़ रहा है (क्योंकि में घट रहा है ), इसलिए यदि कोई नियोक्ता प्रदर्शन की समीक्षा कर रहा है तो वह अपने कर्मचारी के व्यवहार को उसके कार्य की योग्यता से अनुमान लगा सकता है।

एमएलआर को संतुष्ट करने वाले वितरण के सदस्य

सांख्यिकीय मॉडल प्रायः मानते हैं कि डेटा के कुछ सदस्य से वितरण द्वारा उत्पन्न होते हैं और उस वितरण को निर्धारित करना चाहते हैं। यह कार्य सरल हो जाता है यदि सदस्य के पास मोनोटोन संभावना अनुपात गुण (एमएलआरपी) है।

घनत्व कार्यों का सदस्य पैरामीटर द्वारा अनुक्रमित आदेशित सेट में मान को कहा जाता है कि आँकड़ों में मोनोटोन संभावना अनुपात (एमएलआर) है, यदि किसी के लिए ,

का गैर-घटता कार्य है।

अतः हम कहते हैं कि वितरण के सदस्य में एमएलआर है।

सदस्यों की सूची

सदस्य   जिसमें एमएलआर है
एक्सपोनेंशियल टिप्पणियों
द्विपद टिप्पणियों
प्वासों टिप्पणियों
सामान्य if ज्ञात, टिप्पणियों


परिकल्पना परीक्षण

यदि यादृच्छिक चर के सदस्य में एमएलआर है, परिकल्पना के लिए समान रूप से सबसे शक्तिशाली परीक्षण के प्रति सरलता से निर्धारित किया जा सकता है।

उदाहरण: प्रयास और आउटपुट

उदाहरण स्टोकेस्टिक प्रौद्यिगिकी में इनपुट कार्यकर्ता का प्रयास है, उदाहरण के लिए इसका आउटपुट है, जिसकी संभावना प्रायिकता घनत्व फलन द्वारा वर्णित है। सदस्य की मोनोटोन संभावना अनुपात गुण (एमएलआरपी) निम्नानुसार व्यक्त किया गया है: किसी के लिए , यह तथ्य का तात्पर्य है कि अनुपात में बढ़ रहा है। .

अन्य सांख्यिकीय गुणों से संबंध

मोनोटोन संभावनाएं सांख्यिकीय सिद्धांत के कई क्षेत्रों में उपयोग की जाती हैं, जिसमें बिंदु अनुमान और परिकल्पना परीक्षण, साथ ही संभाव्यता मॉडल भी सम्मिलित हैं।

घातीय सदस्य

पैरामीटर एक्सपोनेंशियल सदस्य में मोनोटोन संभावना-कार्य होते हैं। विशेष रूप से, संभाव्यता घनत्व कार्यों या द्रव्यमान कार्यों के आयामी घातीय सदस्य के साथ

पर्याप्तता (सांख्यिकी) T(x) में मोनोटोन कम संभावना अनुपात है, परन्तु कम नहीं  होता है।

समान रूप से सबसे शक्तिशाली परीक्षण: कार्लिन-रुबिन प्रमेय

कार्लिन-रुबिन प्रमेय के अनुसार, मोनोटोन संभावना कार्यों का उपयोग समान रूप से सबसे शक्तिशाली परीक्षणों के निर्माण के लिए किया जाता है।[1] स्केलर मापन पर विचार करें जिसमें स्केलर पैरामीटर θ द्वारा प्राचलित प्रायिकता घनत्व फलन होता है, और संभावना अनुपात को परिभाषित करता है। यदि मोनोटोन कम है तो , किसी भी जोड़ी के लिए (जिसका अर्थ है कि बड़ा है, अधिक सम्भावना है), तो परीक्षण:

है,
जहाँ चयन इसलिए किया जाता है जिससे है,

परीक्षण के लिए आकार α का यूएमपी परीक्षण है, ध्यान दें कि ठीक यही परीक्षण परीक्षण के लिए यूएमपी भी है।


माध्य निष्पक्ष अनुमान

मोनोटोन संभावना-कार्यों का उपयोग मध्य-निष्पक्ष आकलनकर्ताओं के निर्माण के लिए किया जाता है, जोहान फनज़ागल और अन्य द्वारा निर्दिष्ट विधियों का उपयोग करते है।[2][3] ऐसी ही प्रक्रिया राव-ब्लैकवेल प्रमेय का एनालॉग है। समान रूप से न्यूनतम-विचरण निष्पक्ष अनुमानक के लिए राव-ब्लैकवेल प्रक्रिया है | मीन-निष्पक्ष अनुमानक: प्रक्रिया माध्य के लिए राव-ब्लैकवेल प्रक्रिया की उपेक्षा में संभाव्यता वितरण के छोटे वर्ग के लिए है- निष्पक्ष अनुमान परन्तु हानि कार्यों के बड़े वर्ग के लिए है।[3]: 713 

आजीवन विश्लेषण: उत्तरजीविता विश्लेषण और विश्वसनीयता

यदि वितरण का सदस्य में मोनोटोन संभावना का अनुपात गुण है,

  1. सदस्य में मोनोटोन अल्प संकट की दर (परन्तु आवश्यक नहीं कि अंदर ) है।
  2. सदस्य पूर्व क्रम (और इसलिए दूसरे क्रम) में स्टोकास्टिक प्रभुत्व प्रदर्शित और का सबसे उचित बायेसियन अपडेट में बढ़ रहा है। .

परन्तु इसके विपरीत नहीं न तो मोनोटोन संकट की दर और न ही स्टोकेस्टिक प्रभुत्व एमएलआरपी को प्रभावित करते हैं।

प्रमाण

वितरण सदस्य x में एमएलआर को संतुष्ट करके, जिसमें और :

या समकक्ष:

इस अभिव्यक्ति को दो बार एकीकृत करके, हम प्राप्त करते हैं:

1. To with respect to

integrate and rearrange to obtain

2. From with respect to

integrate and rearrange to obtain


पूर्व क्रम का स्टोकेस्टिक प्रभुत्व

प्रथम क्रम प्रभुत्व प्राप्त करने के लिए उपरोक्त दो असमानता

है।


मोनोटोन संकट दर

मोनोटोन संकट दर प्राप्त करने के लिए केवल ऊपर दी गई दूसरी असमानता का उपयोग करते है।


उपयोग

अर्थशास्त्र

एमएलआर मैकेनिज्म डिजाइन और सूचना के अर्थशास्त्र में एजेंटों के प्रकार वितरण पर महत्वपूर्ण प्रतिबन्ध होता है, जहां एमएलआर के परिणाम के रूप में पॉल मिलग्रोम ने संकेतों की अनुकूलता (स्टोकेस्टिक प्रभुत्व के संदर्भ में) को परिभाषित किया है।[4] मैकेनिज्म डिजाइन मॉडल के अधिकांश समाधान ऐसे वितरणों को मानते हैं जो समाधान विधियों का लाभ लेने के लिए एमएलआर को संतुष्ट करते हैं जिससे प्रारम्भ एवं व्याख्या करना सरल हो सकता है।

संदर्भ

  1. Casella, G.; Berger, R.L. (2008), Statistical Inference, Brooks/Cole. ISBN 0-495-39187-5 (Theorem 8.3.17)
  2. Pfanzagl, Johann (1979). "उपद्रव मापदंडों की उपस्थिति में इष्टतम औसत निष्पक्ष अनुमानकों पर". Annals of Statistics. 7 (1): 187–193. doi:10.1214/aos/1176344563.
  3. 3.0 3.1 Brown, L. D.; Cohen, Arthur; Strawderman, W. E. (1976). "अनुप्रयोगों के साथ सख्त मोनोटोन संभावना अनुपात के लिए एक पूर्ण वर्ग प्रमेय". Ann. Statist. 4 (4): 712–722. doi:10.1214/aos/1176343543.
  4. Milgrom, P. R. (1981). Good News and Bad News: Representation Theorems and Applications. The Bell Journal of Economics, 12(2), 380–391. https://doi.org/10.2307/3003562