रोटेशन ऑपरेटर (भौतिकी) , पहले तर्क के साथ रोटेशन कार्तीय समन्वय प्रणाली का संकेत और दूसरा रोटेशन कोण, विस्थापन ऑपरेटर के माध्यम से काम कर सकता है जैसा कि नीचे समझाया गया है, असीम घुमावों के लिए। यही कारण है कि, यह पहली बार दिखाया गया है कि ट्रांसलेशन ऑपरेटर स्थिति x पर एक कण पर कैसे कार्य कर रहा है (कण तब कितना राज्य में है) क्वांटम यांत्रिकी के अनुसार)।
स्थिति पर कण का अनुवाद ठीक जगह लेना : क्योंकि 0 का अनुवाद कण की स्थिति को नहीं बदलता है, हमारे पास (1 अर्थ के साथ पहचान कार्य, जो कुछ भी नहीं करता है):
इसके अतिरिक्त, हैमिल्टन के समीकरण मान लीजिए से स्वतंत्र है पद। क्योंकि अनुवाद ऑपरेटर के संदर्भ में लिखा जा सकता है , और , हम वह जानते हैं इस परिणाम का अर्थ है कि सिस्टम के लिए रैखिक गति संरक्षित है।
शास्त्रीय रूप से हमारे पास कोणीय गति है क्वांटम यांत्रिकी पर विचार करने में यह वही है और ऑपरेटरों के रूप में। शास्त्रीय रूप से, एक असीम घूर्णन वेक्टर का के बारे में -अक्ष को छोड़कर अपरिवर्तित को निम्नलिखित अपरिमेय अनुवादों (टेलर श्रृंखला का उपयोग करके) द्वारा व्यक्त किया जा सकता है:
इससे राज्यों के लिए निम्नानुसार है:
और इसके परिणामस्वरूप:
का उपयोग करते हुए
ऊपर से साथ और टेलर विस्तार हमें मिलता है:
साथ शास्त्रीय क्रॉस उत्पाद के अनुसार कोणीय गति का घटक।
कोण के लिए रोटेशन प्राप्त करने के लिए , हम स्थिति का उपयोग करके निम्नलिखित अंतर समीकरण का निर्माण करते हैं :
अनुवाद ऑपरेटर के समान, अगर हमें हैमिल्टनियन दिया जाता है जो घूर्णी रूप से सममित है -एक्सिस, तात्पर्य . इस परिणाम का अर्थ है कि कोणीय संवेग संरक्षित है।
स्पिन कोणीय गति के बारे में उदाहरण के लिए -अक्ष हम अभी बदलते हैं साथ (कहाँ पॉल मैट्रिसेस है) और हमें स्पिन (भौतिकी) रोटेशन ऑपरेटर मिलता है
ऑपरेटरों को मैट्रिक्स (गणित) द्वारा दर्शाया जा सकता है। रैखिक बीजगणित से कोई जानता है कि एक निश्चित मैट्रिक्स परिवर्तन के माध्यम से दूसरे आधार (रैखिक बीजगणित) में प्रदर्शित किया जा सकता है
कहाँ आधार परिवर्तन मैट्रिक्स है। यदि वैक्टर क्रमश: z-अक्ष क्रमशः एक आधार पर दूसरे आधार पर हैं, वे एक निश्चित कोण के साथ y-अक्ष के लंबवत हैं उन दोनों के बीच। स्पिन ऑपरेटर पहले आधार में फिर स्पिन ऑपरेटर में तब्दील किया जा सकता है अन्य आधार के निम्नलिखित परिवर्तन के माध्यम से:
मानक क्वांटम यांत्रिकी से हमारे पास ज्ञात परिणाम हैं और कहाँ और उनके संबंधित आधारों में शीर्ष स्पिन हैं। तो हमारे पास:
इसके साथ तुलना पैदावार .
इसका अर्थ है कि यदि राज्य के बारे में घुमाया जाता है -अक्ष एक कोण से , यह राज्य बन जाता है , एक परिणाम जिसे मनमाना अक्षों के लिए सामान्यीकृत किया जा सकता है।