स्टोकेस्टिक ड्रिफ्ट
संभाव्यता सिद्धांत में, स्टोकेस्टिक ड्रिफ्ट एक स्टोकेस्टिक प्रक्रिया (यादृच्छिक) के औसत मूल्य में परिवर्तन है। संबंधित अवधारणा बहाव दर है, जो वह दर है जिस पर औसत परिवर्तन होता है। उदाहरण के लिए, एक प्रक्रिया जो फेयर कॉइन टॉस की श्रृंखला में हेड्स की संख्या की गणना करती है, उसकी बहाव दर 1/2 प्रति टॉस होती है। यह इस औसत मूल्य के बारे में यादृच्छिक उतार-चढ़ाव के विपरीत है। उस सिक्के को उछालने की प्रक्रिया का स्टोचैस्टिक माध्य 1/2 है और स्टोकेस्टिक माध्य का बहाव दर 0 है, यह मानते हुए कि 1 = हेड और 0 = टेल है।
जनसंख्या अध्ययन में स्टोकेस्टिक बहाव
धर्मनिरपेक्ष घटनाओं के अनुदैर्ध्य अध्ययनों को बहुपद द्वारा फिट किए गए प्रवृत्ति घटक के रूप में अक्सर अवधारणाबद्ध किया जाता है, चक्रीय घटक अक्सर स्वसंबंध या फूरियर श्रृंखला पर आधारित विश्लेषण द्वारा फिट किया जाता है, और यादृच्छिक घटक (स्टोकेस्टिक बहाव) को हटाया जाता है।
समय श्रृंखला विश्लेषण के दौरान, चक्रीय और स्टोचैस्टिक बहाव घटकों की पहचान अक्सर स्वसंबंध विश्लेषण और प्रवृत्ति के अंतर को बदलकर करने का प्रयास किया जाता है। स्वत: सहसंबंध विश्लेषण फिट किए गए मॉडल के सही चरण की पहचान करने में मदद करता है, जबकि क्रमिक अंतर स्टोकेस्टिक बहाव घटक को सफेद शोर में बदल देता है।
जनसंख्या आनुवंशिकी में स्टोचैस्टिक बहाव भी हो सकता है जहां इसे आनुवंशिक बहाव के रूप में जाना जाता है। बेतरतीब ढंग से प्रजनन करने वाले जीवों की सीमित आबादी विभिन्न जीनोटाइप की आवृत्तियों में पीढ़ी दर पीढ़ी परिवर्तन का अनुभव करेगी। इससे किसी जीनोटाइप का निर्धारण हो सकता है, और यहां तक कि प्रजाति का उदय भी हो सकता है। पर्याप्त रूप से छोटी आबादी में बहाव जनसंख्या पर नियतात्मक प्राकृतिक चयन के प्रभाव को भी बेअसर कर सकता है।
अर्थशास्त्र और वित्त में स्टोकेस्टिक बहाव
अर्थशास्त्र और वित्त में समय श्रृंखला चर - उदाहरण के लिए, स्टॉक की कीमतें, सकल घरेलू उत्पाद, आदि - आम तौर पर स्थिर रूप से विकसित होते हैं और अक्सर स्थिर प्रक्रिया होती हैं। गैर-स्थिर। वे आमतौर पर या तो प्रवृत्ति-स्थिर प्रक्रिया | ट्रेंड-स्टेशनरी या इकाई जड़ के रूप में तैयार किए जाते हैं। प्रवृत्ति स्थिर प्रक्रिया {वाईt} के अनुसार विकसित होता है
जहाँ t समय है, f एक नियतात्मक फलन है, और et एक शून्य-दीर्घकालिक-औसत स्थिर यादृच्छिक चर है। इस मामले में स्टोकेस्टिक टर्म स्थिर है और इसलिए कोई स्टोकेस्टिक ड्रिफ्ट नहीं है, हालांकि निर्धारिती घटक f(t) के निश्चित लॉन्ग-रन मीन नहीं होने के कारण टाइम सीरीज़ में ही कोई निश्चित लॉन्ग-रन मीन नहीं हो सकता है। इस गैर-स्टोचैस्टिक ड्रिफ्ट को रिग्रेसिंग द्वारा डेटा से हटाया जा सकता है पर एफ के साथ मेल खाने वालेकार्यात्मक रूप का उपयोग करना, और स्थिर अवशेषों को बनाए रखना। इसके विपरीत, एक इकाई जड़ (अंतर स्थिर) प्रक्रिया के अनुसार विकसित होती है
कहाँ एक शून्य-दीर्घकालिक-औसत स्थिर यादृच्छिक चर है; यहाँ c गैर-स्टोकेस्टिक ड्रिफ्ट पैरामीटर है: यहाँ तक कि यादृच्छिक झटकों की अनुपस्थिति में भीt, y का माध्य c प्रति अवधि बदल जाएगा। इस मामले में गैर-स्थिरता को पहले अंतर और अंतर चर द्वारा डेटा से हटाया जा सकता है सी का लंबी अवधि का मतलब होगा और इसलिए कोई बहाव नहीं होगा। लेकिन यहां तक कि पैरामीटर सी की अनुपस्थिति में (यानी, यहां तक कि अगर सी = 0), यह यूनिट रूट प्रक्रिया स्थिर यादृच्छिक झटके यू की उपस्थिति के कारण बहाव और विशेष रूप से स्टोकास्टिक बहाव दर्शाती है।t: u का बार होने वाला गैर-शून्य मान उसी अवधि के y में शामिल किया जाता है, जो अवधि बाद में y का एक-पीरियड-लैग्ड मान बन जाता है और इसलिए नई अवधि के y मान को प्रभावित करता है, जो स्वयं अगली अवधि में बन जाता है lagged y और अगले y मान को प्रभावित करता है, और इसी तरह हमेशा के लिए। इसलिए शुरुआती झटके के बाद y, इसका मान हमेशा के लिए y के माध्य में शामिल हो जाता है, इसलिए हमारे पास स्टोकेस्टिक बहाव है। फिर से इस बहाव को z प्राप्त करने के लिए पहले y को अलग करके हटाया जा सकता है जो बहाव नहीं करता है।
मौद्रिक नीति के संदर्भ में, नीतिगत प्रश्न यह है कि क्या केंद्रीय बैंक को प्रत्येक समय अवधि में अपने वर्तमान स्तर से मूल्य स्तर की निश्चित वृद्धि दर प्राप्त करने का प्रयास करना चाहिए, या क्या पूर्व निर्धारित विकास के लिए मूल्य स्तर की वापसी को लक्षित करना चाहिए पथ। बाद वाले मामले में किसी भी मूल्य स्तर के बहाव को पूर्व निर्धारित पथ से दूर जाने की अनुमति नहीं है, जबकि पूर्व मामले में मूल्य स्तर में कोई भी स्टोकेस्टिक परिवर्तन भविष्य के पथ के साथ हर बार मूल्य स्तर के अपेक्षित मूल्यों को स्थायी रूप से प्रभावित करता है। किसी भी मामले में मूल्य स्तर बढ़ते अपेक्षित मूल्य के अर्थ में बहाव है, लेकिन मामले गैर-स्थिरता के प्रकार के अनुसार भिन्न होते हैं: पूर्व मामले में अंतर स्थिरता, लेकिन बाद के मामले में प्रवृत्ति स्थिरता।
यह भी देखें
- धर्मनिरपेक्ष भिन्नता
- समय श्रृंखला का अपघटन
संदर्भ
- Krus, D.J., & Ko, H.O. (1983) Algorithm for autocorrelation analysis of secular trends. Educational and Psychological Measurement, 43, 821–828. (Request reprint).
- Krus, D. J., & Jacobsen, J. L. (1983) Through a glass, clearly? A computer program for generalized adaptive filtering. Educational and Psychological Measurement, 43, 149–154