प्रभार(भौतिकी)
This article needs additional citations for verification. (October 2015) (Learn how and when to remove this template message) |
भौतिकी में, एक प्रभार कई अलग-अलग मात्राओं में से कोई भी होता है, जैसे विद्युत में बिजली का प्रभार या परिमाण क्रोमोडायनामिक्स में रंग प्रभारी से कोई भी होता है। शुल्क एक समरूपता समूह के एक समूह के समय-अपरिवर्तनीय जनक समुच्चय के अनुरूप होते हैं, और विशेष रूप से जनित्र के लिए जो दिक्परिवर्तक (भौतिकी) हैमिल्टनियन (परिमाण यांत्रिकी) होते हैं। प्रभारों को प्रायः 'Q' अक्षर से निरूपित किया जाता है, और इसलिए प्रभार का व्युत्क्रम विलुप्त हो जाने वाले दिक्परिवर्तक से मेल खाता है, जहां H हैमिल्टनियन है। इस प्रकार, प्रभार संरक्षित परिमाण संख्याओं से जुड़े होते हैं; ये जनित्र Q के आइगेनवैल्यू q हैं।
सार परिभाषा
संक्षेप में, एक प्रभार अध्ययन के तहत भौतिक प्रणाली की निरंतर समरूपता का कोई जनित्र है। जब एक भौतिक प्रणाली में किसी प्रकार की समरूपता होती है, तो नोथेर के प्रमेय का तात्पर्य एक संरक्षित धारा के अस्तित्व से है। धारा में प्रवाहित होने वाली वस्तु प्रभार है, प्रभार झूठ बीजगणित|(स्थानीय) समरूपता समूह का जनक है। इस प्रभार को कभी-कभी नोथेर प्रभार भी कहा जाता है।
इस प्रकार, उदाहरण के लिए, विद्युत प्रभार विद्युत चुंबकत्व के U(1) समरूपता का जनक है। संरक्षित धारा विद्युत धारा है।
स्थानीय, गतिशील समरूपता के मामले में, प्रत्येक प्रभार से जुड़ा एक गेज क्षेत्र है; परिमाणित होने पर, गेज फ़ील्ड गेज बोसॉन बन जाता है। सिद्धांत के आरोप गेज क्षेत्र को विकीर्ण करते हैं। इस प्रकार, उदाहरण के लिए, विद्युत चुंबकत्व का गेज क्षेत्र विद्युत चुम्बकीय क्षेत्र है; और गेज बोसोन फोटॉन है।
शब्द प्रभार प्रायः एक समरूपता के जनित्र और जनित्र के संरक्षित परिमाण संख्या (ईजेनवेल्यू) दोनों के लिए समानार्थक शब्द के रूप में प्रयोग किया जाता है। इस प्रकार, अपर-केस अक्षर Q को जनित्र को संदर्भित करते हैं, एक के पास हैमिल्टनियन (परिमाण यांत्रिकी) के साथ जनित्र दिक्परिवर्तक है। [क्यू, एच] = 0. क्रमविनिमेय संपत्ति का तात्पर्य है कि eigenvalues (लोअर-केस) q समय-अपरिवर्तनीय हैं: dq/dt = 0.
इसलिए, उदाहरण के लिए, जब समरूपता समूह एक लाई समूह है, तो प्रभार ऑपरेटर लाई बीजगणित की जड़ प्रणाली की सरल जड़ों के अनुरूप होते हैं; प्रभार के परिमाणीकरण के लिए मूल प्रक्रिया अकाउंटिंग की असतत टोपोलॉजी। सरल जड़ों का उपयोग किया जाता है, क्योंकि अन्य सभी जड़ें इनके रैखिक संयोजनों के रूप में प्राप्त की जा सकती हैं। सामान्य जड़ों को प्रायः उठाने और कम करने वाले ऑपरेटर या सीढ़ी ऑपरेटर कहा जाता है।
प्रभार परिमाण संख्या तब ले बीजगणित के दिए गए प्रतिनिधित्व सिद्धांत के उच्चतम-वजन वाले मॉड्यूल के भार के अनुरूप होती है। इसलिए, उदाहरण के लिए, जब परिमाण क्षेत्र सिद्धांत में एक कण एक समरूपता से संबंधित होता है, तो यह उस समरूपता के एक विशेष प्रतिनिधित्व के अनुसार रूपांतरित होता है; प्रभार परिमाण संख्या तो प्रतिनिधित्व का भार है।
उदाहरण
कण भौतिकी के सिद्धांतों द्वारा विभिन्न प्रभार परिमाण नंबर पेश किए गए हैं। इनमें मानक मॉडल के शुल्क शामिल हैं:
- क्वार्क का रंग प्रभार। कलर प्रभार परिमाण क्रोमोडायनामिक्स की SU(3) रंग समरूपता उत्पन्न करता है।
- इलेक्ट्रोवीक इंटरैक्शन की कमजोर आइसोस्पिन परिमाण संख्या। यह इलेक्ट्रोवीक SU(2) × U(1) समरूपता का SU(2) भाग उत्पन्न करता है। कमजोर आइसोस्पिन एक स्थानीय समरूपता है, जिसका गेज बोसोन W और Z बोसोन हैं।
- इलेक्ट्रोमैग्नेटिक इंटरैक्शन के लिए इलेक्ट्रिक प्रभार। गणित के ग्रंथों में, इसे कभी-कभी कहा जाता है एक झूठ बीजगणित भार (प्रतिनिधित्व सिद्धांत) का प्रभार।
अनुमानित समरूपता के आरोप:
- मजबूत आइसोस्पिन प्रभार। समरूपता समूह SU(2) स्वाद (कण भौतिकी) समरूपता है; गेज बोसोन चपरासी हैं। चपरासी प्रारंभिक कण नहीं हैं, और समरूपता केवल अनुमानित है। यह स्वाद समरूपता का एक विशेष मामला है।
- अन्य क्वार्क-स्वाद शुल्क, जैसे विचित्रता या आकर्षण (परिमाण संख्या)। इसके साथ
u
–
d
आइसोस्पिन का ऊपर उल्लेख किया गया है, ये मौलिक कणों की वैश्विक SU(6) स्वाद समरूपता उत्पन्न करते हैं; यह समरूपता भारी क्वार्कों के द्रव्यमान द्वारा गेल-मान-ओकुबो द्रव्यमान सूत्र है। शुल्क में हाइपरप्रभार, एक्स (प्रभार) | एक्स-प्रभार और कमजोर हाइपरप्रभार शामिल हैं।
मानक मॉडल के विस्तार के काल्पनिक शुल्क:
- विद्युत चुंबकत्व के सिद्धांत में काल्पनिक चुंबकीय प्रभार एक अन्य प्रभार है। प्रयोगशाला प्रयोगों में प्रयोगात्मक रूप से चुंबकीय शुल्क नहीं देखा जाता है, लेकिन चुंबकीय मोनोपोल सहित सिद्धांतों के लिए मौजूद होगा।
सुपरसिमेट्री में:
- अत्यधिक प्रभावकारी उस जनित्र को संदर्भित करता है जो सुपरसिमेट्री में फर्मों को बोसोन में घुमाता है, और इसके विपरीत।
- विरासोरो बीजगणित का केंद्रीय प्रभार, जिसे कभी-कभी अनुरूप केंद्रीय प्रभार या अनुरूप विसंगति के रूप में संदर्भित किया जाता है। यहां, समूह सिद्धांत में केंद्र (समूह सिद्धांत) के अर्थ में 'केंद्रीय' शब्द का प्रयोग किया जाता है: यह एक ऑपरेटर है जो बीजगणित में अन्य सभी ऑपरेटरों के साथ संचार करता है। केंद्रीय प्रभार बीजगणित के केंद्रीय विस्तार (गणित) का आइगेनमान है; यहाँ, यह द्वि-आयामी अनुरूप क्षेत्र सिद्धांत का ऊर्जा-संवेग टेंसर है।[1]
गुरुत्वाकर्षण में:
- ऊर्जा-संवेग टेन्सर के आइगेनमान भौतिक द्रव्यमान के अनुरूप होते हैं।
प्रभार संयुग्मन
कण सिद्धांतों की औपचारिकता में, प्रभार जैसी परिमाण संख्या को कभी-कभी प्रभार संयुग्मन ऑपरेटर के माध्यम से उलटा किया जा सकता है जिसे सी कहा जाता है। प्रभार संयुग्मन का सीधा सा मतलब है कि एक दिया गया समरूपता समूह दो असमान (लेकिन अभी भी आइसोमोर्फिक) समूह प्रतिनिधित्व में होता है। आमतौर पर ऐसा होता है कि दो प्रभार-संयुग्म निरूपण लाई समूह के जटिल संयुग्म सदिश स्थान मौलिक निरूपण हैं। उनका उत्पाद तब समूह के एक झूठ समूह के सहायक प्रतिनिधित्व का निर्माण करता है।
इस प्रकार, एक सामान्य उदाहरण यह है कि लोरेंत्ज़ समूह का प्रतिनिधित्व सिद्धांत | SL(2,C) (स्पिनर्स) के दो प्रभार-संयुग्मित मौलिक प्रतिनिधित्वों का उत्पाद लोरेंत्ज़ समूह SO(3,1) के आसन्न प्रतिनिधि बनाता है; संक्षेप में, कोई लिखता है
अर्थात्, दो (लोरेंत्ज़) स्पिनरों का गुणनफल एक (लोरेंत्ज़) सदिश और एक (लोरेंत्ज़) अदिश है। ध्यान दें कि जटिल लाई बीजगणित sl(2,C) का कॉम्पैक्ट जगह रियल फॉर्म su(2) है (वास्तव में, सभी ले बीजगणित का एक अद्वितीय कॉम्पैक्ट वास्तविक रूप है)। समान अपघटन कॉम्पैक्ट फॉर्म के लिए भी है: SU(2)|su(2) में दो स्पिनरों का उत्पाद रोटेशन समूह O(3) और एक एकल में एक वेक्टर है। अपघटन क्लेब्स-गॉर्डन गुणांक द्वारा दिया गया है।
इसी तरह की घटना कॉम्पैक्ट ग्रुप एसयू (3) में होती है, जहां दो प्रभार-संयुग्मित होते हैं लेकिन असमान मौलिक प्रतिनिधित्व, करार दिया जाता है और , संख्या 3 प्रतिनिधित्व के आयाम को दर्शाता है, और क्वार्क के तहत रूपांतरित होने के साथ और एंटीक्वार्क के तहत रूपांतरित हो रहे हैं . दोनों का क्रोनकर उत्पाद देता है
अर्थात्, एक आठ-आयामी प्रतिनिधित्व, आठ गुना मार्ग (भौतिकी) का अष्टक | आठ-गुना तरीका, और एक एकल अवस्था। अभ्यावेदन के ऐसे उत्पादों के अपघटन को इर्रिडिएबल अभ्यावेदन के प्रत्यक्ष योग में सामान्य रूप से लिखा जा सकता है
अभ्यावेदन के लिए . अभ्यावेदन के आयाम आयाम योग नियम का पालन करते हैं:
यहां, प्रतिनिधित्व का आयाम है , और पूर्णांक लिटिलवुड-रिचर्डसन गुणांक होने के नाते। अभ्यावेदन का अपघटन फिर से क्लेब्स-गॉर्डन गुणांक द्वारा दिया जाता है, इस बार सामान्य लाई-बीजगणित सेटिंग में।
यह भी देखें
इस पेज में लापता आंतरिक लिंक की सूची
- समय अपरिवर्तनीय
- दिक्परिवर्तक (भौतिकी)
- एक समूह का उत्पादन सेट
- भौतिक विज्ञान
- सांख्यिक अंक
- विद्युत प्रवाह
- संरक्षित वर्तमान
- फोटोन
- क्रमचयी गुणधर्म
- झूठ समूह
- सीढ़ी संचालक
- उच्चतम वजन मॉड्यूल
- डब्ल्यू और जेड बोसोन
- प्राथमिक कण
- pion
- वजन (प्रतिनिधित्व सिद्धांत)
- virasoro बीजगणित
- चुंबकीय प्रभार
- आकर्षण-शक्ति
- जटिल संयुग्म वेक्टर स्थान
- लोरेंत्ज़ समूह का प्रतिनिधित्व सिद्धांत
- एक लाई समूह का संलग्न प्रतिनिधित्व
- spinor
- आठ गुना रास्ता (भौतिकी)
संदर्भ
- ↑ Fuchs, Jurgen (1992), Affine Lie Algebras and Quantum Groups, Cambridge University Press, ISBN 0-521-48412-X
श्रेणी:विद्युत चुंबकत्व श्रेणी: परिमाण क्रोमोडायनामिक्स श्रेणी:भौतिक मात्रा