संलयन की तापीय धारिता

From Vigyanwiki
Revision as of 19:24, 29 April 2023 by alpha>Ompathak
A logशुद्ध तत्वों के लिए पिघलने और उबलने बनाम पिघलने और उबलने के तापीय धारियों का लॉग प्लॉट। तापमान को पिघलाने की एन्थैल्पी के बीच रैखिक संबंध को रिचर्ड के नियम के रूप में जाना जाता है। ट्राउटन के नियम का प्रदर्शन करते हुए शुद्ध तत्वों बनाम संक्रमण के तापमान के लिए पिघलने और उबलने की एन्थैल्पी

ऊष्मप्रवैगिकी में, रासायनिक पदार्थ के संगलन की तापीय धारिता, जिसे संगलन की (अव्यक्त) गर्मी के रूप में भी जाना जाता है, और एन्थैल्पी में परिवर्तन होता है, जिसके परिणामस्वरूप पदार्थ की एक विशिष्ट मात्रा में ऊर्जा प्रदान करने के परिणामस्वरूप पदार्थ की स्थिति को बदलने के लिए गर्मी होती है। आइसोबैरिक प्रक्रिया में ठोस पदार्थ से तरल पदार्थ में परिवर्तन होता है।

यह एक मोल ठोस को द्रव में बदलने के लिए आवश्यक ऊर्जा की मात्रा है। उदाहरण के लिए, जब 1 किलो बर्फ (0 डिग्री C पर) पिघलती है [[c:File:Phase_diagram_of_water.svg|दबावों की विस्तृत श्रृंखला), 333.55 kJ ऊर्जा बिना किसी तापमान परिवर्तन के अवशोषित होती है। जमने की ऊष्मा (जब कोई पदार्थ जमता है) बराबर और विपरीत होती है।

इस ऊर्जा में परिवेश के दबाव के खिलाफ अपने पर्यावरण को विस्थापित करके मात्रा में किसी भी संबद्ध परिवर्तन के लिए जगह बनाने के लिए आवश्यक योगदान सम्मिलित है। जिस तापमान पर चरण संक्रमण होता है वह संदर्भ के अनुसार गलनांक या हिमांक होता है। परिपाटी के अनुसार, दबाव माना जाता है 1 atm (101.325 kPa) जब तक अन्यथा निर्दिष्ट न किया जाये।

सिंहावलोकन

संगलन की 'एन्थैल्पी' एक संगलन गुप्त ऊष्मा है, क्योंकि पिघलने के दौरान वायुमंडलीय दबाव पर पदार्थ को ठोस से तरल में बदलने के लिए आवश्यक ऊष्मा ऊर्जा संगलन की गुप्त ऊष्मा होती है, क्योंकि प्रक्रिया के दौरान तापमान स्थिर रहता है। संगलन की गुप्त ऊष्मा किसी पदार्थ की किसी भी मात्रा के पिघलने पर होने वाला एन्थैल्पी परिवर्तन है। जब संगलन की ऊष्मा को द्रव्यमान की एक इकाई के रूप में संदर्भित किया जाता है, तो इसे सामान्यतः संगलन की विशिष्ट ऊष्मा कहा जाता है, जबकि संगलन की मोलर ऊष्मा मोल (इकाई) में पदार्थ की प्रति मात्रा में परिवर्तन को संदर्भित करती है।

ठोस चरण की तुलना में तरल चरण में उच्च आंतरिक ऊर्जा होती है। इसका मतलब यह है कि किसी ठोस को पिघलाने के लिए उसे ऊर्जा की आपूर्ति की जानी चाहिए और जब वह जमता है तो तरल से ऊर्जा निकलती है, क्योंकि तरल में अणु निर्बल अंतर-आणविक बलों का अनुभव करते हैं और इसलिए उच्च संभावित ऊर्जा (एक प्रकार की बंधन-पृथक्करण ऊर्जा) होती है। अंतराआण्विक बल के लिए)।

जब तरल पानी को ठंडा किया जाता है, तो इसका तापमान लगातार गिरता जाता है जब तक कि यह 0 डिग्री सेल्सियस पर हिमांक बिंदु की रेखा से ठीक नीचे नहीं गिर जाता। तापमान तब हिमांक पर स्थिर रहता है जबकि पानी क्रिस्टलीकृत हो जाता है। एक बार जब पानी पूरी तरह से जम जाता है तो उसका तापमान गिरता रहता है।

संगलन की तापीय धारिता लगभग हमेशा एक धनात्मक मात्रा होती है; हीलियम एकमात्र ज्ञात अपवाद है।[1] हीलियम-4 में 0.3 K से कम तापमान पर संगलन की ऋणात्मक एन्थैल्पी होती है। 0.77 K (−272.380 °C). इसका मतलब यह है कि, उचित स्थिर दबावों पर, ये पदार्थ गर्मी के अतिरिक्त जम जाते हैं।[2] 4He (हीलियम) के मामले में वह, यह दबाव सीमा 24.992 और के बीच है 25.00 atm (2,533 kPa).[3]

अवधि तीन के संगलन का मानक एन्थैल्पी परिवर्तन
तत्वों की आवर्त सारणी की अवधि दो के संगलन का मानक एन्थैल्पी परिवर्तन
Substance Heat of fusion
(cal/g) (J/g)
water 79.72 333.55
methane 13.96 58.99
propane 19.11 79.96
glycerol 47.95 200.62
formic acid 66.05 276.35
acetic acid 45.90 192.09
acetone 23.42 97.99
benzene 30.45 127.40
myristic acid 47.49 198.70
palmitic acid 39.18 163.93
sodium acetate 63–69 264–289[4]
stearic acid 47.54 198.91
gallium 19.2 80.4
paraffin wax (C25H52) 47.8–52.6 200–220

ये मूल्य ज्यादातर सीआरसी प्रेस हैंडबुक ऑफ केमिस्ट्री एंड फिजिक्स, 62वें संस्करण से हैं। उपरोक्त तालिका में कैलोरी/जी और जे/जी के बीच रूपांतरण थर्मोकेमिकल कैलोरी (calth) = इंटरनेशनल स्टीम टेबल कैलोरी के बजाय 4.184 जूल (calINT) = 4.1868 जूल।

उदाहरण

  • To heat 1 kg of liquid water from 0 °C to 20 °C requires 83.6 kJ (see below). However, heating 0 °C ice to 20 °C requires additional energy to melt the ice. We can treat these two processes independently; thus, to heat 1 kg of ice from 273.15 K to water at 293.15 K (0 °C to 20 °C) requires:
    (1) 333.55 J/g (heat of fusion of ice) = 333.55 kJ/kg = 333.55 kJ for 1 kg of ice to melt, plus
    (2) 4.18 J/(g⋅K) × 20 K = 4.18 kJ/(kg⋅K) × 20 K = 83.6 kJ for 1 kg of water to increase in temperature by 20 K
    (1 + 2) 333.55 kJ + 83.6 kJ = 417.15 kJ for 1 kg of ice to increase in temperature by 20 K
    From these figures it can be seen that one part ice at 0 °C will cool almost exactly 4 parts water from 20 °C to 0 °C.
  • Silicon has a heat of fusion of 50.21 kJ/mol. 50 kW of power can supply the energy required to melt about 100 kg of silicon in one hour:
    50 kW = 50kJ/s = 180000kJ/h
    180000kJ/h × (1 mol Si)/50.21kJ × 28gSi/(mol Si) × 1kgSi/1000gSi = 100.4kg/h

विलेयता भविष्यवाणी

संगलन की ऊष्मा का उपयोग तरल पदार्थों में ठोस पदार्थों की विलेयता (घुलनशीलता) का अनुमान लगाने के लिए भी किया जा सकता है। बशर्ते एक आदर्श समाधान तिल अंश प्राप्त हो संतृप्ति पर विलेय का संगलन की ऊष्मा का एक कार्य है, ठोस का गलनांक और तापमान समाधान का:

यहाँ, गैस नियतांक है। उदाहरण के लिए, 298 केल्विन (इकाइयां) पर पानी में खुमारी भगाने की घुलनशीलता का अनुमान लगाया गया है:

चूंकि पानी और पेरासिटामोल का दाढ़ द्रव्यमान है 18.0153gmol−1 और 151.17gmol−1 और विलयन का घनत्व है 1000gL−1, ग्राम प्रति लीटर में घुलनशीलता का अनुमान है:

जो 11% की वास्तविक घुलनशीलता (240 g/L) से विचलन है। यह त्रुटि तब कम हो सकती है जब एक अतिरिक्त ताप क्षमता पैरामीटर को ध्यान में रखा जाए।[5]

प्रमाण

रासायनिक संतुलन में विलयन और शुद्ध ठोस में विलेय की रासायनिक क्षमता समान होती है:

या

साथ गैस स्थिर और तापमान।

पुनर्व्यवस्थित करता है:

और तबसे

शुद्ध तरल और शुद्ध ठोस के बीच रासायनिक क्षमता में अंतर होने के कारण संगलन की गर्मी, यह इस प्रकार है

गिब्स-हेल्महोल्ट्ज़ समीकरण का अनुप्रयोग:

अंततः देता है:

या:

और अभिन्न के साथ:

अंतिम परिणाम प्राप्त होता है:

यह भी देखें

टिप्पणियाँ

  1. Atkins & Jones 2008, p. 236.
  2. Ott & Boerio-Goates 2000, pp. 92–93.
  3. Hoffer, J. K.; Gardner, W. R.; Waterfield, C. G.; Phillips, N. E. (April 1976). "Thermodynamic properties of 4He. II. The bcc phase and the P-T and VT phase diagrams below 2 K". Journal of Low Temperature Physics. 23 (1): 63–102. Bibcode:1976JLTP...23...63H. doi:10.1007/BF00117245. S2CID 120473493.
  4. Ibrahim Dincer and Marc A. Rosen. Thermal Energy Storage: Systems and Applications, page 155
  5. Measurement and Prediction of Solubility of Paracetamol in Water-Isopropanol Solution. Part 2. Prediction H. Hojjati and S. Rohani Org. Process Res. Dev.; 2006; 10(6) pp 1110–1118; (Article) doi:10.1021/op060074g


संदर्भ

  • Atkins, Peter; Jones, Loretta (2008), Chemical Principles: The Quest for Insight (4th ed.), W. H. Freeman and Company, p. 236, ISBN 978-0-7167-7355-9
  • Ott, BJ. Bevan; Boerio-Goates, Juliana (2000), Chemical Thermodynamics: Advanced Applications, Academic Press, ISBN 0-12-530985-6