गैर-सापेक्षवादी गुरुत्वाकर्षण क्षेत्र

From Vigyanwiki
Revision as of 16:16, 14 April 2023 by alpha>Saurabh

सामान्य सापेक्षता (जीआर) आइंस्टीन के सापेक्ष गुरुत्वाकर्षण के अंदर , गुरुत्वाकर्षण क्षेत्र को 10-घटक मीट्रिक टेन्सर द्वारा वर्णित किया गया है। चूंकि न्यूटोनियन गुरुत्वाकर्षण में जो जीआर की एक सीमा है, गुरुत्वाकर्षण क्षेत्र को एकल घटक न्यूटोनियन गुरुत्वाकर्षण क्षमता द्वारा वर्णित किया गया है। यह मीट्रिक के अंदर न्यूटोनियन क्षमता की पहचान करने और शेष 9 क्षेत्रों की भौतिक व्याख्या की पहचान करने के लिए प्रश्न उठाता है।

गैर-सापेक्षवादी गुरुत्वाकर्षण क्षेत्रों की परिभाषा इस प्रश्न का उत्तर प्रदान करती है, और इस प्रकार न्यूटोनियन भौतिकी में मीट्रिक टेन्सर की छवि का वर्णन करती है। ये क्षेत्र सख्ती से गैर-सापेक्षवादी नहीं हैं। बल्कि, वे जीआर की गैर-सापेक्षतावादी (या पोस्ट-न्यूटोनियन) सीमा पर प्रयुक्त होते हैं।

एक पाठक जो विद्युत (EM) से परिचित है, निम्नलिखित सादृश्य से लाभान्वित होगा। EM में, स्थिर विद्युत क्षमता और चुंबकीय वेक्टर क्षमता . से परिचित है साथ में, वे 4-वेक्टर क्षमता में संयोजित होते हैं , जो सापेक्षता के अनुकूल है। इस संबंध को विद्युत चुम्बकीय 4-वेक्टर क्षमता के गैर-सापेक्षवादी अपघटन का प्रतिनिधित्व करने के लिए सोचा जा सकता है। वास्तव में , प्रकाश की गति के संबंध में धीरे-धीरे चलने वाले बिंदु-कण आवेशों की एक प्रणाली का विस्तार में अध्ययन किया जा सकता है , जहां एक विशिष्ट वेग है और प्रकाश की गति है। इस विस्तार को पोस्ट-कूलॉम्बिक विस्तार के रूप में जाना जाता है। इस विस्तार के अंदर , पहले से ही 0वें क्रम पर दो-निकाय क्षमता में योगदान देता है, जबकि केवल पहले क्रम और आगे से योगदान देता है, क्योंकि यह विद्युत धाराओं से जुड़ता है और इसलिए संबंधित क्षमता समानुपाती होती है .

परिभाषा

गैर-सापेक्षतावादी सीमा में, अशक्त गुरुत्वाकर्षण और गैर-सापेक्षतावादी वेगों की, सामान्य सापेक्षता न्यूटन के सार्वभौमिक गुरुत्वाकर्षण के नियम को कम कर देती है। सख्त सीमा से परे जाकर सुधारों को न्यूटोनियन के बाद के विस्तार के रूप में जाना जाने वाला क्षोभ सिद्धांत में व्यवस्थित किया जा सकता है। उसी के भाग के रूप में, मीट्रिक गुरुत्वाकर्षण क्षेत्र , को गैर-सापेक्ष गुरुत्वाकर्षण (NRG) क्षेत्रों में पुनर्परिभाषित और विघटित किया जाता है

 : गुरुत्वाकर्षण क्षमता है, गुरुत्वाकर्षण-चुंबकीय वेक्टर क्षमता के रूप में जाना जाता है, और अंत में एक 3डी सममित टेंसर है जिसे स्थानिक मीट्रिक व्याकुलता के रूप में जाना जाता है। क्षेत्र की पुनर्परिभाषा किसके द्वारा दी गई है[1]

घटकों में यह सामान्य है
जहाँ .

घटकों की गिनती, में 10 है, जबकि में 1 और 3 और अंत में में 6 है। इसलिए, घटकों के संदर्भ में, अपघटन पढ़ता है .

परिभाषा के लिए प्रेरणा

न्यूटोनियन के बाद की सीमा में, पिंड प्रकाश की गति की तुलना में धीरे-धीरे चलते हैं, और इसलिए गुरुत्वाकर्षण क्षेत्र भी धीरे-धीरे बदल रहा है। समय की दिशा में प्रयुक्त करने के लिए कलुजा-क्लेन कमी (केके) को स्वतंत्र होने के लिए खेतों का अनुमान लगाया गया था। । याद रखें कि इसके मूल संदर्भ में, केके कमी उन क्षेत्रों पर प्रयुक्त होती है जो कॉम्पैक्ट स्थानिक चौथी दिशा से स्वतंत्र हैं। संक्षेप में, एनआरजी अपघटन समय के साथ कलुजा-क्लेन कमी है।[1]

न्यूटोनियन के बाद के विस्तार के संदर्भ में परिभाषा को अनिवार्य रूप से पेश किया गया था ,[2] और अंत में के सामान्यीकरण को कताई वस्तु और चुंबकीय द्विध्रुवीय के बीच समानता में सुधार करने के लिए बदल दिया गया था।[3]

मानक अनुमानों के साथ संबंध

परिभाषा के अनुसार, न्यूटोनियन के बाद का विस्तार एक अशक्त क्षेत्र सन्निकटन है। आव्यूह के पहले क्रम क्षोभ के अंदर जहां मिंकोवस्की आव्यूह है जिसे हम स्केलर, वेक्टर और टेन्सर में मानक अशक्त क्षेत्र अपघटन पाते हैं जो गैर-सापेक्ष गुरुत्वाकर्षण (NRG) क्षेत्रों के समान है। एनआरजी क्षेत्रों का महत्व यह है कि वे एक गैर-रैखिक विस्तार प्रदान करते हैं जिससे अशक्त क्षेत्र/न्यूटोनियन विस्तार के बाद उच्च क्रम में गणना की सुविधा मिलती है। संक्षेप में, एनआरजी क्षेत्रों को न्यूटोनियन विस्तार के बाद उच्च क्रम के लिए अनुकूलित किया गया है।

भौतिक व्याख्या

अदिश क्षेत्र न्यूटोनियन गुरुत्वाकर्षण क्षमता के रूप में व्याख्या की जाती है।

वेक्टर क्षेत्र गुरुत्वाकर्षण-चुंबकीय वेक्टर क्षमता के रूप में व्याख्या की जाती है। यह विद्युत-चुंबकत्व (ईएम) में चुंबकीय-समान या चुंबकीय सदिश क्षमता के अनुरूप है। विशेष रूप से, यह बड़े मापदंड पर धाराओं (ईएम में चार्ज धाराओं का एनालॉग) अर्थात् गति से प्राप्त होता है।

नतीजतन, ग्रेविटो-चुंबकीय वेक्टर क्षमता चुंबकीय क्षेत्र के लिए उत्तरदाई है। वर्तमान-वर्तमान परस्पर क्रिया, जो पहले पोस्ट-न्यूटोनियन क्रम में प्रकट होती है। विशेष रूप से, यह समांतर भारी धाराओं के बीच बल में प्रतिकारक योगदान उत्पन्न करता है। चूंकि , यह प्रतिकर्षण मानक न्यूटोनियन गुरुत्वाकर्षण आकर्षण से पलट गया है, क्योंकि गुरुत्वाकर्षण में एक उपस्थित तार सदैव बड़े मापदंड पर (आवेशित) होना चाहिए - ईएम के विपरीत।


एक स्पिनिंग वस्तु एक विद्युत चुम्बकीय वर्तमान लूप का एनालॉग है, जो चुंबकीय द्विध्रुव के रूप में बनती है, और इस तरह यह में एक चुंबकीय-जैसे द्विध्रुव क्षेत्र बनाता है .

सममित टेंसर स्थानिक मीट्रिक क्षोभ के रूप में जाना जाता है। दूसरे पोस्ट-न्यूटोनियन क्रम से और उसके बाद, इसका उत्तरदाई होना चाहिए। यदि कोई पहले न्यूटोनियन आदेश के बाद प्रतिबंधित करता है,तो अनदेखा किया जा सकता है, और सापेक्ष गुरुत्वाकर्षण को , क्षेत्र द्वारा वर्णित किया जाता है। इसलिए यह विद्युत चुंबकत्व का एक शक्तिशाली एनालॉग बन जाता है, एक समानता जिसे गुरुत्वाकर्षण विद्युत चुंबकत्व के रूप में जाना जाता है।

अनुप्रयोग और सामान्यीकरण

सामान्य सापेक्षता में दो-शरीर की समस्या आंतरिक रुचि और अवलोकन, ज्योतिषीय रुचि दोनों रखती है। विशेष रूप से, इसका उपयोग बाइनरी स्टार कॉम्पैक्ट वस्तु की गति का वर्णन करने के लिए किया जाता है, जो कि गुरुत्वाकर्षण तरंग के स्रोत हैं। इस प्रकार, गुरुत्वाकर्षण तरंग का पता लगाने और उसकी व्याख्या करने के लिए इस समस्या का अध्ययन आवश्यक है।

इस दो शरीर समस्या के अंदर , जीआर के प्रभाव को दो निकाय प्रभावी क्षमता द्वारा कब्जा कर लिया जाता है, जो न्यूटोनियन सन्निकटन के बाद विस्तारित होता है। इस दो निकाय प्रभावी क्षमता के निर्धारण को कम करने के लिए गैर-सापेक्ष गुरुत्वाकर्षण क्षेत्र पाए गए।[4][5][6]


सामान्यीकरण

उच्च-आयामी आइंस्टीन गुरुत्वाकर्षण में, एक मनमाने ढंग से स्पेसटाइम आयाम के साथ , गैर-सापेक्ष गुरुत्वाकर्षण क्षेत्रों की परिभाषा सामान्यीकरण करती है [1]

स्थानापन्न उपरोक्त मानक 4d परिभाषा को पुन: उत्पन्न करता है।

संदर्भ

  1. 1.0 1.1 1.2 Kol, Barak; Smolkin, Michael (2008-03-28). eq. (2.6). "शास्त्रीय प्रभावी क्षेत्र सिद्धांत और बंदी ब्लैक होल". Physical Review D. 77 (6): 064033. arXiv:0712.2822. Bibcode:2008PhRvD..77f4033K. doi:10.1103/PhysRevD.77.064033. ISSN 1550-7998. S2CID 16299713.
  2. Kol, Barak; Smolkin, Michael (2008-07-21). "Non-Relativistic Gravitation: From Newton to Einstein and Back". Classical and Quantum Gravity. 25 (14): 145011. arXiv:0712.4116. Bibcode:2008CQGra..25n5011K. doi:10.1088/0264-9381/25/14/145011. ISSN 0264-9381. S2CID 119216835.
  3. Birnholtz, Ofek; Hadar, Shahar; Kol, Barak (2013). eq. (A.10). "न्यूटोनियन विकिरण और प्रतिक्रिया के बाद का सिद्धांत". Phys. Rev. D. 88 (10): 104037. arXiv:1305.6930. Bibcode:2013PhRvD..88j4037B. doi:10.1103/PhysRevD.88.104037. S2CID 119170985.
  4. Gilmore, James B.; Ross, Andreas (2008-12-30). "दूसरे पोस्ट-न्यूटोनियन बाइनरी डायनेमिक्स की प्रभावी क्षेत्र सिद्धांत गणना". Physical Review D. 78 (12): 124021. arXiv:0810.1328. Bibcode:2008PhRvD..78l4021G. doi:10.1103/PhysRevD.78.124021. ISSN 1550-7998. S2CID 119271832.
  5. Foffa, S.; Sturani, R. (2011-08-09). "तीसरे पोस्ट-न्यूटोनियन क्रम में रूढ़िवादी बाइनरी गतिकी की प्रभावी क्षेत्र सिद्धांत गणना". Physical Review D. 84 (4): 044031. arXiv:1104.1122. Bibcode:2011PhRvD..84d4031F. doi:10.1103/PhysRevD.84.044031. ISSN 1550-7998. S2CID 119234031.
  6. Blanchet, Luc (2014). "न्यूटोनियन के बाद के स्रोतों और प्रेरणादायक कॉम्पैक्ट बायनेरिज़ से गुरुत्वाकर्षण विकिरण". Living Reviews in Relativity. 17 (1): 2. arXiv:1310.1528. Bibcode:2014LRR....17....2B. doi:10.12942/lrr-2014-2. ISSN 2367-3613. PMC 5256563. PMID 28179846.