प्रतिबिंब (गणित)
गणित में, प्रतिबिंब (जिसे कभी-कभी रीफ्लेक्शन के रूप में भी लिखा जाता है)[1] एक यूक्लिडियन समष्टि से स्वयं के लिए एक फ़ंक्शन (गणित) है जो एक हाइपरप्लेन के साथ एक आइसोमेट्री है जो निश्चित बिंदु (गणित) के सेट के रूप में है; इस सेट को परावर्तन का सममिति अक्ष (आयाम 2 में) या तल (गणित) (आयाम 3 में) कहा जाता है। प्रतिबिंब द्वारा किसी आकृति की छवि प्रतिबिंब के अक्ष या तल में उसकी दर्पण छवि होती है। उदाहरण के लिए एक ऊर्ध्वाधर अक्ष के संबंध में प्रतिबिंब के लिए छोटे लैटिन अक्षर पी की दर्पण छवि क्यू की प्रकार दिखाई देगी। एक क्षैतिज अक्ष में प्रतिबिंब द्वारा इसका प्रतिबिम्ब b जैसा दिखेगा। एक प्रतिबिंब एक अंतर्वलन (गणित) है: जब उत्तराधिकार में दो बार लागू किया जाता है, तो प्रत्येक बिंदु अपने मूल स्थान पर वापस आ जाता है, और प्रत्येक ज्यामितीय वस्तु को उसकी मूल स्थिति में बहाल कर दिया जाता है।
शब्द "परावर्तन" का प्रयोग कभी-कभी यूक्लिडियन समष्टि से मैपिंग के एक बड़े वर्ग के लिए किया जाता है, अर्थात् गैर-पहचान वाले आइसोमेट्रीज़ जो इनवोल्यूशन हैं। इस प्रकार के आइसोमेट्रीज़ में निश्चित बिंदुओं (दर्पण) का एक सेट होता है जो एक एफाइन उपक्षेत्र होता है, लेकिन संभवतः एक हाइपरप्लेन से छोटा होता है। उदाहरण के लिए एक बिंदु प्रतिबिंब एक समावेशी आइसोमेट्री है जिसमें केवल एक निश्चित बिंदु होता है; इसके नीचे अक्षर पी की छवि d जैसा दिखेगा। इस ऑपरेशन को पॉइंट रिफ्लेक्शन के रूप में भी जाना जाता है (कॉक्सेटर 1969, §7.2) , और यूक्लिडियन स्थान को एक सममित स्थान के रूप में प्रदर्शित करता है। एक यूक्लिडियन सदिश समष्टि में, मूल बिंदु पर स्थित बिंदु में प्रतिबिंब सदिश निषेध के समान होता है। अन्य उदाहरणों में त्रि-आयामी समष्टि में एक रेखा में प्रतिबिंब सम्मलित हैं। सामान्यतः, चूंकि, प्रतिबिंब शब्द के अयोग्य उपयोग का अर्थ है हाइपरप्लेन में प्रतिबिंब।
कुछ गणितज्ञ प्रतिबिंब के पर्याय के रूप में फ्लिप का उपयोग करते हैं।[2][3][4]
निर्माण
एक समतल (या, क्रमशः, 3-आयामी) ज्यामिति में, एक बिंदु के प्रतिबिंब को खोजने के लिए बिंदु से उस रेखा (तल) पर लंब को गिराएं जिसका उपयोग प्रतिबिंब के लिए किया जाता है, और इसे दूसरी तरफ समान दूरी तक बढ़ाएं। किसी आकृति का प्रतिबिम्ब ज्ञात करने के लिए, आकृति के प्रत्येक बिंदु को प्रतिबिम्बित करें।
बिंदु को प्रतिबिंबित करने के लिए P रेखा के माध्यम से AB कम्पास और स्ट्रेटेज का उपयोग करते हुए, निम्नानुसार आगे बढ़ें (आकृति देखें):
- चरण 1 (लाल): केंद्र के साथ एक वृत्त का निर्माण करें P और कुछ निश्चित त्रिज्या r अंक बनाने के लिए A′ और B′ रेखा पर AB, जो से समान दूरी पर होगा P.
- चरण 2 (हरा): पर केंद्रित हलकों का निर्माण करें A′ और B′ त्रिज्या होना r. P और Q इन दो वृत्तों के प्रतिच्छेदन बिंदु होंगे।
बिंदु Q तो बिंदु का प्रतिबिंब है P रेखा के माध्यम से AB.
गुण
छवि: Simx2=rotOK.svg|right|thumb| एक अक्ष पर परावर्तन के बाद दूसरे अक्ष में परावर्तन, जो पहले वाले के समानांतर नहीं है, कुल गति का परिणाम है जो कुल्हाड़ियों के चौराहे के बिंदु के चारों ओर एक घूर्णन (गणित) है, जो अक्षों के बीच के कोण से दोगुना कोण है।
एक प्रतिबिंब के लिए मैट्रिक्स (गणित) निर्धारक −1 और इजनवैल्यू -1, 1, 1, ..., 1 के साथ ऑर्थोगोनल मैट्रिक्स है। ऐसे दो मैट्रिक्स का उत्पाद एक विशेष ऑर्थोगोनल मैट्रिक्स है जो रोटेशन का प्रतिनिधित्व करता है। प्रत्येक घूर्णन (गणित) मूल के माध्यम से हाइपरप्लेन में प्रतिबिंबों की एक समान संख्या में परावर्तन का परिणाम है, और प्रत्येक अनुचित घुमाव एक विषम संख्या में परावर्तित होने का परिणाम है। इस प्रकार प्रतिबिंब ऑर्थोगोनल समूह उत्पन्न करते हैं, और इस परिणाम को कार्टन-ड्यूडोने प्रमेय के रूप में जाना जाता है।
इसी प्रकार यूक्लिडियन समूह , जिसमें यूक्लिडियन समष्टि के सभी आइसोमेट्रीज़ सम्मलित हैं, एफाइन हाइपरप्लेन में प्रतिबिंबों द्वारा उत्पन्न होता है। सामान्यतः, एक समूह (गणित) जो एफ़िन हाइपरप्लेन में प्रतिबिंबों द्वारा उत्पन्न होता है, एक प्रतिबिंब समूह के रूप में जाना जाता है। इस प्रकार से उत्पन्न परिमित समूह कॉक्सेटर समूह के उदाहरण हैं।
समतल में एक रेखा पर परावर्तन
दो आयाम में उत्पत्ति के माध्यम से एक रेखा के पार प्रतिबिंब को निम्न सूत्र द्वारा वर्णित किया जा सकता है
जहाँ परिलक्षित होने वाले वेक्टर को दर्शाता है, किसी भी सदिश को उस रेखा में दर्शाता है जिस पर प्रतिबिंब किया जाता है, और के डॉट उत्पाद को दर्शाता है साथ . ध्यान दें कि उपरोक्त सूत्र को इस रूप में भी लिखा जा सकता है
यह कह रहा है कि का एक प्रतिबिंब आर-पार के सदिश प्रक्षेपण के 2 गुना के बराबर है पर , माइनस वेक्टर . एक रेखा में प्रतिबिंबों में 1, और -1 के आइगेनमान होते हैं।
एन आयामों में एक हाइपरप्लेन के माध्यम से प्रतिबिंब
एक वेक्टर दिया यूक्लिडियन समष्टि में , मूल के माध्यम से हाइपरप्लेन में प्रतिबिंब के लिए सूत्र, ओर्थोगोनल टू , द्वारा दिया गया है
जहाँ के डॉट उत्पाद को दर्शाता है साथ . ध्यान दें कि उपरोक्त समीकरण में दूसरा शब्द वेक्टर प्रक्षेपण का सिर्फ दो गुना है पर . कोई भी इसे आसानी से चेक कर सकता है
- Refa(v) = −v, यदि इसके समानांतर , और
- Refa(v) = v, यदि के लंबवत है a.
ज्यामितीय उत्पाद का उपयोग करना, सूत्र है
चूँकि ये प्रतिबिंब यूक्लिडियन समष्टि के आइसोमेट्रीज़ हैं जो उत्पत्ति को ठीक करते हैं इसलिए उन्हें ऑर्थोगोनल मेट्रिसेस द्वारा दर्शाया जा सकता है। उपरोक्त प्रतिबिंब के अनुरूप ऑर्थोगोनल मैट्रिक्स मैट्रिक्स (गणित) है
जहाँ दर्शाता है पहचान मैट्रिक्स और ए का स्थानान्तरण है। इसकी प्रविष्टियां हैं
जहाँ δij क्रोनकर डेल्टा है।
एफ़िन हाइपरप्लेन में प्रतिबिंब के लिए सूत्र उत्पत्ति के माध्यम से नहीं है
यह भी देखें
- समन्वय घूर्णन और प्रतिबिंब
- गृहस्थ परिवर्तन
- उलटा ज्यामिति
- रोटेशन का विमान
- प्रतिबिंब मानचित्रण
- प्रतिबिंब समूह
टिप्पणियाँ
- ↑ "Reflexion" is an archaic spelling
- ↑ Childs, Lindsay N. (2009), A Concrete Introduction to Higher Algebra (3rd ed.), Springer Science & Business Media, p. 251, ISBN 9780387745275
- ↑ Gallian, Joseph (2012), Contemporary Abstract Algebra (8th ed.), Cengage Learning, p. 32, ISBN 978-1285402734
- ↑ Isaacs, I. Martin (1994), Algebra: A Graduate Course, American Mathematical Society, p. 6, ISBN 9780821847992
संदर्भ
- Coxeter, Harold Scott MacDonald (1969), Introduction to Geometry (2nd ed.), New York: John Wiley & Sons, ISBN 978-0-471-50458-0, MR 0123930
- Popov, V.L. (2001) [1994], "Reflection", Encyclopedia of Mathematics, EMS Press
- Weisstein, Eric W. "Reflection". MathWorld.
बाहरी कड़ियाँ
- Reflection in Line at cut-the-knot
- Understanding 2D Reflection and Understanding 3D Reflection by Roger Germundsson, The Wolfram Demonstrations Project.