बिंदु प्रतिबिंब

From Vigyanwiki
2 आयामों में बिंदु प्रतिबिंब 180° घुमाव के समान है।
दोहरी टेट्राहेड्रा जो एक दूसरे के लिए केंद्रीय रूप से सममित हैं

ज्यामिति में, बिंदु प्रतिबिंब (बिंदु उलटा, केंद्रीय उलटा, या बिंदु के माध्यम से उलटा) यूक्लिडियन अंतरिक्ष का प्रकार का आइसोमेट्री है। वस्तु जो बिंदु प्रतिबिंब के अनुसार अपरिवर्तनीय है, उसे बिंदु समरूपता कहा जाता है; यदि यह अपने केंद्र के माध्यम से बिंदु प्रतिबिंब के अनुसार अपरिवर्तनीय है, तो इसे केंद्रीय समरूपता या सेंट्रोसिमेट्री कहा जाता है।

बिंदु प्रतिबिंब को एफ़िन परिवर्तन के रूप में वर्गीकृत किया जा सकता है। अर्थात्, यह आइसोमेट्री इंवोल्यूशन (गणित) एफिन परिवर्तन है, जिसमें ठीक निश्चित बिंदु (गणित) है, जो कि उलटा बिंदु है। यह -1 के बराबर स्केल कारक के साथ समरूप परिवर्तन के बराबर है। व्युत्क्रमण बिंदु को होमोथेटिक केंद्र भी कहा जाता है।

शब्दावली

प्रतिबिंब शब्द ढीला है, और कुछ लोगों द्वारा भाषा का दुरुपयोग माना जाता है, उलटा पसंद किया जाता है; चूंकि, बिंदु प्रतिबिंब का व्यापक रूप से उपयोग किया जाता है। ऐसे नक्शे इनवोल्यूशन (गणित) हैं, इसका अर्थ है कि उनके पास क्रम 2 है - वे अपने स्वयं के व्युत्क्रम हैं: उन्हें दो बार लागू करने से पहचान मानचित्रोर उत्त्पन्न होता है - जो प्रतिबिंब नामक अन्य मानचित्रो के बारे में सच है| अधिक संक्षेप में, प्रतिबिंब (रैखिक बीजगणित) हाइपरप्लेन में प्रतिबिंब को संदर्भित करता है ( डायमेंशनल एफिन उपक्षेत्र - लाइन पर बिंदु (ज्यामिति), प्लेन में लाइन (ज्यामिति), 3-स्पेस में प्लेन), हाइपरप्लेन फिक्स होने के साथ, लेकिन यूक्लिडियन स्पेस के किसी भी इनवॉल्वमेंट पर अधिक व्यापक रूप से रिफ्लेक्शन लागू होता है, और निश्चित सेट (आयाम k का संबधित स्थान, जहां ) दर्पण कहलाता है। आयाम 1 में ये मेल खाते हैं, क्योंकि बिंदु रेखा में हाइपरप्लेन है।

रेखीय बीजगणित के संदर्भ में, यह मानते हुए कि मूल निश्चित है, इनवॉल्यूशन बिल्कुल 1 या -1 के सभी ईजेनवैल्यू के साथ विकर्ण मानचित्र हैं। हाइपरप्लेन में परावर्तन का एकल −1 वास्तविक मूल्य चिह् (और बहुलता) होता है 1 वास्तविक मूल्य चिह् पर), जबकि बिंदु प्रतिबिंब में केवल -1 वास्तविक मूल्य चिह् (बहुलता n के साथ) होता है।

व्युत्क्रम शब्द को व्युत्क्रम ज्यामिति के साथ भ्रमित नहीं होना चाहिए, जहां व्युत्क्रम को वृत्त के संबंध में परिभाषित किया गया है।

उदाहरण

2D examples
Hexagonal parallelogon.png
षट्कोण समानांतर चतुर्भुज
Octagon g2 symmetry.png
अष्टकोण

दो आयामों में, बिंदु प्रतिबिंब 180 डिग्री के घूर्णन के समान होता है। तीन आयामों में, बिंदु प्रतिबिंब को 180-डिग्री रोटेशन संरचना के रूप में वर्णित किया जा सकता है, जो रोटेशन के अक्ष के लंबवत विमान में प्रतिबिंब के साथ होता है। आयाम n में, बिंदु प्रतिबिंब (गणित) हैं - यदि n सम है, और यदि n विषम है तो ओरिएंटेशन-रिवर्सिंग है ।

सूत्र

यूक्लिडियन अंतरिक्ष R में वेक्टर a दिया गया हैn, बिंदु 'p' पर 'a' के परावर्तन का सूत्र है

ऐसे मामले में जहां पी मूल है, बिंदु प्रतिबिंब केवल वेक्टर a की अस्वीकृति है।

यूक्लिडियन ज्यामिति में, बिंदु P के संबंध में बिंदु (ज्यामिति) X का व्युत्क्रम बिंदु X* होता है, जैसे कि P अंत बिंदु X और X* वाले रेखा खंड का मध्य बिंदु होता है। दूसरे शब्दों में, X से P तक सदिश (ज्यामितीय) P से X'* तक सदिश के समान है।

P में व्युत्क्रमण का सूत्र है

x* = 2a - x

जहाँ a, x और x* क्रमशः P, X और X* के स्थिति सदिश हैं।

यह फ़ंक्शन (गणित) आइसोमेट्री इंवोल्यूशन (गणित) एफ़िन ट्रांसफ़ॉर्मेशन है, जिसमें ठीक निश्चित बिंदु (गणित) है, जो P है।

समान स्केलिंग या समरूपता के विशेष मामले के रूप में बिंदु प्रतिबिंब

जब उलटा बिंदु P उत्पत्ति के साथ मेल खाता है, तो बिंदु प्रतिबिंब समान स्केलिंग के विशेष मामले के बराबर होता है:-1 के बराबर स्केल कारक के साथ समान स्केलिंग। यह रैखिक परिवर्तन का उदाहरण है।

जब पी उत्पत्ति के साथ मेल नहीं खाता है, बिंदु प्रतिबिंब होमोथेटिक परिवर्तन के विशेष मामले के बराबर है: होमोथेटिक केंद्र के साथ समरूपता P के साथ मेल खाता है, और स्केल कारक -1। (यह गैर-रैखिक संबंध परिवर्तन का उदाहरण है।)

बिंदु प्रतिबिंब समूह

2-आयामों में दो ऑफसेट बिंदु प्रतिबिंबों की रचना अनुवाद है।

दो बिंदु प्रतिबिंबों के कार्यों की संरचना अनुवाद (ज्यामिति) है। विशेष रूप से, p पर बिंदु प्रतिबिंब के बाद q पर बिंदु प्रतिबिंब वेक्टर 2(q − p) द्वारा अनुवाद है।

सभी बिंदु प्रतिबिंबों और अनुवादों से युक्त सेट यूक्लिडियन समूह का लाइ उपसमूह है। यह Rn का अर्ध-प्रत्यक्ष उत्पाद है क्रम 2 के चक्रीय समूह के साथ, बाद वाला 'Rn' पर निषेध द्वारा कार्य करता है । यह यूक्लिडियन समूह का उपसमूह है जो अनंत बिंदु पर रेखा को ठीक करता है।

मामले में n = 1, बिंदु प्रतिबिंब समूह रेखा का पूर्ण यूक्लिडियन समूह है।

गणित में बिंदु प्रतिबिंब

  • एक क्षेत्र के केंद्र में बिंदु प्रतिबिंब एंटीपोडल मानचित्र उत्पन्न करता है।
  • प्रत्येक बिंदु पर आइसोमेट्रिक प्रतिबिंब के साथ रिमेंनियन सममित स्थान रीमैनियन कई गुना है। लाई समूहों और रीमानियन ज्यामिति के अध्ययन में सममित स्थान महत्वपूर्ण भूमिका निभाते हैं।

विश्लेषणात्मक ज्यामिति में बिंदु प्रतिबिंब

बिंदु दिया और इसका प्रतिबिंब बिंदु के संबंध में , बाद वाला खंड का मध्य बिंदु है ;

इसलिए, परावर्तित बिंदु के निर्देशांक खोजने के लिए समीकरण हैं

विशेष रूप से वह मामला है जिसमें बिंदु C के निर्देशांक हैं (बिंदु प्रतिबिंब देखें उत्पत्ति के संबंध में उलटा)


गुण

सम-आयामी यूक्लिडियन अंतरिक्ष में, 2N-आयामी स्थान कहें, बिंदु P में व्युत्क्रम, P पर प्रतिच्छेद करने वाले N पारस्परिक रूप से ऑर्थोगोनल विमानों के मनमाने सेट के प्रत्येक विमान में कोणों पर N घुमावों के बराबर है।। ये घुमाव पारस्परिक रूप से कम्यूटेटिव हैं। इसलिए, समान-आयामी अंतरिक्ष में बिंदु में व्युत्क्रम अभिविन्यास-संरक्षण आइसोमेट्री या यूक्लिडियन समूह है।

विषम-आयामी यूक्लिडियन अंतरिक्ष में, (2N + 1)-विमीय स्थान कहें, यह P पर प्रतिच्छेद करने वाले N पारस्परिक रूप से ऑर्थोगोनल विमानों के मनमाने सेट के प्रत्येक विमान में π पर N घुमाव के बराबर है, जो 2N-आयामी में प्रतिबिंब के साथ संयुक्त है। उप-अंतरिक्ष इन घूर्णन विमानों द्वारा फैला हुआ है। इसलिए, यह ओरिएंटेशन को संरक्षित करने के अतिरिक्त उलट देता है, यह अप्रत्यक्ष आइसोमेट्री है।

ज्यामितीय रूप से 3D में यह P के माध्यम से अक्ष के चारों ओर 180 डिग्री के कोण से घूमने की मात्रा है, जो P के माध्यम से विमान में प्रतिबिंब के साथ संयुक्त है जो धुरी के लंबवत है; परिणाम अक्ष के अभिविन्यास (कठोर शरीर) (दूसरे अर्थ में) पर निर्भर नहीं करता है। ऑपरेशन के प्रकार, या इसके द्वारा उत्पन्न समूह के प्रकार के लिए संकेतन , Ci, S2, और 1×.है समूह प्रकार बिना किसी शुद्ध घूर्णी समरूपता के 3D में तीन समरूपता समूह प्रकारों में से है, n = 1 के साथ चक्रीय समरूपता देखें।

तीन आयामों में निम्नलिखित बिंदु समूहों में व्युत्क्रम होता है:

  • Cnh और Dnh एन के लिए भी
  • S2n और Dnd विषम एन के लिए
  • Th, Oh, और Ih

एक बिंदु में व्युत्क्रम से निकटता से संबंधित विमान (ज्यामिति) के संबंध में प्रतिबिंब (गणित) है, जिसे विमान में व्युत्क्रम के रूप में माना जा सकता है।

क्रिस्टलोग्राफी में उलटा केंद्र

अणु में उलटा केंद्र होता है जब बिंदु सम्मलित होता है जिसके माध्यम से समरूपता बनाए रखते हुए सभी परमाणु प्रतिबिंबित हो सकते हैं। क्रिस्टलोग्राफी में, व्युत्क्रम केंद्रों की उपस्थिति सेंट्रोसिमेट्रिक और नॉनसेंट्रोसिमेट्रिक यौगिकों के बीच अंतर करती है। क्रिस्टल संरचनाएं विभिन्न पॉलीहेड्रा से बनी होती हैं, जिन्हें उनके समन्वय संख्या और बंधन कोणों द्वारा वर्गीकृत किया जाता है। उदाहरण के लिए, चार-समन्वित पॉलीहेड्रा को टेट्राहेड्रल आण्विक ज्यामिति के रूप में वर्गीकृत किया जाता है, जबकि पांच-समन्वयित वातावरण बंधन कोणों के आधार पर स्क्वायर पिरामिडल आण्विक ज्यामिति या त्रिकोणीय द्विपक्षीय आण्विक ज्यामिति हो सकते हैं। सभी क्रिस्टलीय यौगिक परमाणु बिल्डिंग ब्लॉक की पुनरावृत्ति से आते हैं जिसे यूनिट सेल के रूप में जाना जाता है, और ये यूनिट सेल परिभाषित करते हैं कि कौन सा पॉलीहेड्रा फॉर्म और किस क्रम में है। ये पॉलीहेड्रा कोने-, किनारे- या चेहरे के बंटवारे के माध्यम से साथ जुड़ते हैं, जिसके आधार पर परमाणु आम बंधन साझा करते हैं। उलटा केंद्रों वाले पॉलीहेड्रा को सेंट्रोसिमेट्रिक के रूप में जाना जाता है, जबकि बिना नॉनसेंट्रोसिमेट्रिक होते हैं। छह-समन्वय ऑक्टाहेड्रा सेंट्रोसिमेट्रिक पॉलीहेड्रा का उदाहरण है, क्योंकि केंद्रीय परमाणु व्युत्क्रम केंद्र के रूप में कार्य करता है जिसके माध्यम से छह बंधुआ परमाणु समरूपता बनाए रखते हैं। दूसरी ओर, टेट्राहेड्रा, केंद्रीय परमाणु के माध्यम से व्युत्क्रम के रूप में नॉनसेंट्रोसिमेट्रिक हैं, जिसके परिणामस्वरूप पॉलीहेड्रॉन का उत्क्रमण होगा। यह ध्यान रखना महत्वपूर्ण है कि विषम समन्वय संख्याओं के साथ संबंध ज्यामितीय गैर-केंद्रीय होना चाहिए, क्योंकि इन पॉलीहेड्रा में व्युत्क्रम केंद्र नहीं होंगे।

क्रिस्टल में वास्तविक पॉलीहेड्रा में अधिकांशतः उनके संबंध ज्यामिति में प्रत्याशित एकरूपता की कमी होती है। क्रिस्टलोग्राफी में पाई जाने वाली सामान्य अनियमितताओं में विकृतियाँ और विकार सम्मलित हैं। विरूपण में गैर-समान बंधन लंबाई के कारण पॉलीहेड्रा का ताना-बाना सम्मलित होता है, जो अधिकांशतः विषमलैंगिकों के बीच अलग-अलग इलेक्ट्रोस्टैटिक आकर्षण के कारण होता है। उदाहरण के लिए, टाइटेनियम केंद्र ऑक्टाहेड्रा में छह ऑक्सीजेंस के समान रूप से बंध जाएगा, लेकिन विरूपण तब होगा जब ऑक्सीजेन को अधिक विद्युतीय फ्लोरीन के साथ बदल दिया गया हो। विकृतियां पॉलीहेड्रा की अंतर्निहित ज्यामिति को नहीं बदलेंगी - विकृत ऑक्टाहेड्रॉन को अभी भी ऑक्टाहेड्रॉन के रूप में वर्गीकृत किया गया है, लेकिन पर्याप्त विकृतियां यौगिक के सेंट्रोसिमेट्री पर प्रभाव डाल सकती हैं। विकार में दो या दो से अधिक साइटों पर विभाजित अधिभोग सम्मलित होता है, जिसमें परमाणु पॉलीहेड्रा के निश्चित प्रतिशत में क्रिस्टलोग्राफिक स्थिति और शेष पदों में अन्य स्थान पर कब्जा कर लेगा। विकार कुछ पॉलीहेड्रा के सेंट्रोसिमेट्री को भी प्रभावित कर सकता है, यह इस बात पर निर्भर करता है कि अधिभोग पहले से सम्मलितउलटा केंद्र पर विभाजित है या नहीं।

सेंट्रोसिमेट्री पूरी तरह से क्रिस्टल संरचना पर भी लागू होती है। क्रिस्टल को बत्तीस क्रिस्टलोग्राफिक बिंदु समूहों में वर्गीकृत किया गया है जो यह वर्णन करते हैं कि कैसे विभिन्न पॉलीहेड्रा थोक संरचना में अंतरिक्ष में खुद को व्यवस्थित करते हैं। इन बत्तीस बिंदु समूहों में से ग्यारह सेंट्रोसिमेट्रिक हैं। नॉनसेंट्रोसिमेट्रिक पॉलीहेड्रा की उपस्थिति इस बात की गारंटी नहीं देती है कि बिंदु समूह समान होगा- दो नॉनसेंट्रोसिमेट्रिक आकृतियों को अंतरिक्ष में इस तरह से उन्मुख किया जा सकता है जिसमें दोनों के बीच व्युत्क्रम केंद्र होता है। दूसरे का सामना करने वाले दो टेट्राहेड्रा के बीच में व्युत्क्रम केंद्र हो सकता है, क्योंकि अभिविन्यास प्रत्येक परमाणु को परावर्तित जोड़ी रखने की अनुमति देता है। उलटा भी सच है, क्योंकि गैर-सेंट्रोसिमेट्रिक बिंदु समूह बनाने के लिए कई सेंट्रोसिमेट्रिक पॉलीहेड्रा की व्यवस्था की जा सकती है।

नॉनसेंट्रोसिमेट्रिक यौगिक गैर रेखीय प्रकाशिकी में अनुप्रयोग के लिए उपयोगी हो सकते हैं। उलटा केंद्रों के माध्यम से समरूपता की कमी क्रिस्टल के क्षेत्रों को आने वाली रोशनी के साथ अलग तरह से बातचीत करने की अनुमति दे सकती है। तरंग दैर्ध्य, आवृत्ति और प्रकाश की तीव्रता परिवर्तन के अधीन है क्योंकि विद्युत चुम्बकीय विकिरण पूरे ढांचे में विभिन्न ऊर्जा अवस्था के साथ संपर्क करता है। पोटेशियम टिटानिल फॉस्फेट, KTiOPO4 (केटीपी)। नॉनसेंट्रोसिमेट्रिक, विषमलंबाक्ष Pna21 अंतरिक्ष समूह में क्रिस्टलीकृत होता है, और उपयोगी गैर-रैखिक क्रिस्टल है।केटीपी का उपयोग फ़्रीक्वेंसी-डबलिंग नियोडिमियम-डोप्ड लेज़रों के लिए किया जाता है, जो दूसरी-हार्मोनिक पीढ़ी के रूप में जानी जाने वाली गैर-रैखिक ऑप्टिकल गुण का उपयोग करता है। गैर-रैखिक सामग्री के लिए आवेदनों पर अभी भी शोध किया जा रहा है, लेकिन ये गुण व्युत्क्रम केंद्र की उपस्थिति (या इसके अभाव) से उत्पन्न होते हैं।

उत्पत्ति के संबंध में उलटा

मूल के संबंध में व्युत्क्रम स्थिति सदिश के योज्य व्युत्क्रम से मेल खाता है, और -1 द्वारा अदिश गुणन के लिए भी। ऑपरेशन हर दूसरे रैखिक परिवर्तन के साथ संचार करता है, लेकिन अनुवाद (ज्यामिति) के साथ नहीं | यह सामान्य रैखिक समूह के केंद्र (समूह सिद्धांत) में है। बिंदु में, रेखा में या विमान में इंगित किए बिना उलटा का अर्थ है यह उलटा; भौतिकी में उत्पत्ति के माध्यम से त्रि-आयामी प्रतिबिंब को समता (भौतिकी) भी कहा जाता है।

गणित में, मूल के माध्यम से प्रतिबिंब कार्टेशियन समन्वय प्रणाली की उत्पत्ति में यूक्लिडियन अंतरिक्ष आरएन के बिंदु प्रतिबिंब को संदर्भित करता है। मूल के माध्यम से प्रतिबिंब - 1 -1 द्वारा स्केलर गुणा के अनुरूप ऑर्थोगोनल परिवर्तन है, और इसे - I -I के रूप में भी लिखा जा सकता है, जहां I I पहचान मैट्रिक्स है। तीन आयामों में, यह भेजता है , इत्यादि।

प्रतिनिधित्व

एक अदिश मैट्रिक्स के रूप में, यह हर आधार पर मैट्रिक्स द्वारा दर्शाया जाता है विकर्ण पर, और, पहचान के साथ, ओर्थोगोनल समूह का केंद्र (समूह सिद्धांत) है .

यह एन ऑर्थोगोनल प्रतिबिंबों का उत्पाद है (किसी भी ऑर्थोगोनल आधार के अक्षों के माध्यम से प्रतिबिंब); ध्यान दें कि ऑर्थोगोनल प्रतिबिंब यात्रा करते हैं।

2 आयामों में, यह वास्तव में 180 डिग्री और आयाम में घूर्णन है , यह एन ऑर्थोगोनल विमानों में 180 डिग्री से घूर्णन है;[note 1] फिर से ध्यान दें कि ऑर्थोगोनल विमानों में घुमाव कम्यूट करते हैं।

गुण

इसमें निर्धारक होता है (एक मैट्रिक्स द्वारा या प्रतिबिंबों के उत्पाद के रूप में प्रतिनिधित्व से)। इस प्रकार यह समान आयाम में अभिविन्यास-संरक्षण है, इस प्रकार विशेष ऑर्थोगोनल समूह SO(2n) का तत्व है, और यह विषम आयाम में अभिविन्यास-उलट रहा है, इस प्रकार SO(2n + 1) का तत्व नहीं है और इसके अतिरिक्त स्प्लिट शॉर्ट प्रदान करता है मानचित्र का सटीक क्रम , दिखा रहा है आंतरिक प्रत्यक्ष उत्पाद के रूप में।

अनुरूप रूप से, यह ऑर्थोगोनल समूह का सबसे लंबा तत्व है, प्रतिबिंबों के उत्पन्न करने वाले सेट के संबंध में: ऑर्थोगोनल समूह के सभी तत्वों में प्रतिबिंबों के उत्पन्न सेट के संबंध में अधिकतम n लंबाई का कार्य होता है,[note 2] और उत्पत्ति के माध्यम से प्रतिबिंब की लंबाई n है, चूंकि यह इसमें अद्वितीय नहीं है: घुमावों के अन्य अधिकतम संयोजनों (और संभवतः प्रतिबिंबों) की भी अधिकतम लंबाई होती है।

ज्यामिति

SO(2r) में, मूल के माध्यम से प्रतिबिंब सामान्य मीट्रिक के संबंध में पहचान तत्व से सबसे दूर का बिंदु है। O(2r + 1) में, मूल के माध्यम से प्रतिबिंब SO(2r+1) में नहीं है (यह गैर-पहचान घटक में है), और कोई प्राकृतिक अर्थ नहीं है जिसमें यह किसी अन्य बिंदु की तुलना में दूर बिंदु है गैर-पहचान घटक, लेकिन यह अन्य घटक में आधार बिंदु प्रदान करता है।

क्लिफर्ड बीजगणित और स्पिन समूह

इसे तत्व से भ्रमित नहीं होना चाहिए स्पिन ग्रुप में यह स्पिन समूहों के लिए विशेष रूप से भ्रमित करने वाला है, जैसा कि , और इस प्रकार में दोनों हैं और 2 लिफ्ट |

पहचान के माध्यम से परावर्तन क्लिफोर्ड बीजगणित के ऑटोमोर्फिज़्म तक फैला हुआ है, जिसे मुख्य समावेशन या ग्रेड समावेशन कहा जाता है।

पहचान के माध्यम से परावर्तन स्यूडोस्केलर (क्लिफर्ड बीजगणित ) में ले जाता है।

यह भी देखें

टिप्पणियाँ

  1. "Orthogonal planes" meaning all elements are orthogonal and the planes intersect at 0 only, not that they intersect in a line and have dihedral angle 90°.
  2. This follows by classifying orthogonal transforms as direct sums of rotations and reflections, which follows from the spectral theorem, for instance.


संदर्भ