औसती फलन
गणित में और विशेष रूप से माप सिद्धांत में, मापने योग्य कार्य दो मापने योग्य रिक्त स्थान के अंतर्निहित समूहों के मध्य का कार्य है जो रिक्त स्थान की संरचना को संरक्षित करता है। इस प्रकार किसी भी माप (गणित) समूह की पूर्व अनुमान मापने योग्य है। यह परिभाषा के सीधे सादृश्य में है कि टोपोलॉजिकल स्पेस के मध्य सतत कार्य कार्य टोपोलॉजिकल संरचना को संरक्षित करता है। वास्तविक विश्लेषण में, मापने योग्य कार्यों का उपयोग लेबेसेग एकीकरण की परिभाषा में किया जाता है। अतः संभाव्यता सिद्धांत में, संभाव्यता स्थान पर मापने योग्य कार्य को यादृच्छिक चर के रूप में जाना जाता है।
औपचारिक परिभाषा
सामान्यतः और मापने योग्य स्थान है, जिसका अर्थ होता है और संबंधित से सुसज्जित समूह हैं|-बीजगणित और फंक्शन को मापने योग्य कहा जाता है यदि प्रत्येक के लिए के पूर्व प्रतिबिम्ब के अंतर्गत में है, अर्थात् सभी के लिए होता है।
शब्द उपयोग भिन्नता
का चुनाव उपरोक्त परिभाषा में बीजगणित कभी-कभी निहित होता है और संदर्भ तक छोड़ दिया जाता है। उदाहरण के लिए, के लिए या अन्य टोपोलॉजिकल रिक्त स्थान, बोरेल बीजगणित (सभी खुले समूहों द्वारा उत्पन्न) आम पसंद है। कुछ लेखक मापने योग्य कार्यों को बोरेल बीजगणित के संबंध में विशेष रूप से वास्तविक-मूल्यवान कार्यों के रूप में परिभाषित करते हैं।[1]
यदि फ़ंक्शन के मान अनंत-आयामी वेक्टर अंतरिक्ष में हैं, तो मापनीयता की अन्य गैर-समतुल्य परिभाषाएं, जैसे कमजोर मापनीयता और बोचनर मापनीयता उपस्तिथ हैं।
मापने योग्य कार्यों के उल्लेखनीय वर्ग
- रैंडम वेरिएबल्स परिभाषा के अनुसार प्रायिकता रिक्त स्थान पर परिभाषित औसत अंकिते के कार्य हैं।
- यदि और बोरेल समूह # मानक बोरेल रिक्त स्थान और कुराटोस्की प्रमेय हैं, मापने योग्य कार्य इसे बोरेल फंक्शन भी कहा जाता है। सतत फलन बोरेल फलन होते हैं किन्तु सभी बोरेल फलन संतत नहीं होते हैं। चूँकि, मापने योग्य कार्य लगभग सतत कार्य है; लुज़िन की प्रमेय देखें। यदि बोरेल फ़ंक्शन मानचित्र का भाग होता है इसे बोरेल सेक्शन कहा जाता है।
- लेबेस्ग औसत अंकिते का कार्य औसत अंकिते का कार्य है कहाँ है लेबेस्ग औसत अंकिते का समूह का बीजगणित, और सम्मिश्र संख्याओं पर बोरेल बीजगणित है लेबेस्ग मापने योग्य कार्य गणितीय विश्लेषण में रुचि रखते हैं जिससे कि उन्हें एकीकृत किया जा सकता है। यदि लेबेस्ग मापने योग्य है यदि और केवल यदि सभी के लिए मापने योग्य है यह भी इनमें से किसी के बराबर है सभी के लिए मापने योग्य होना या किसी भी खुले समूह के मापने योग्य होने की पूर्व-छवि। निरंतर कार्य, मोनोटोन कार्य, चरण कार्य, अर्ध-सतत कार्य, रीमैन-अभिन्न कार्य, और परिबद्ध भिन्नता के कार्य सभी लेबेस्ग मापने योग्य हैं।[2] समारोह मापनीय है यदि और केवल यदि वास्तविक और काल्पनिक भाग मापने योग्य हैं।
मापने योग्य कार्यों के गुण
- दो जटिल-मूल्यवान मापने योग्य कार्यों का योग और उत्पाद औसत अंकिते का है।[3] भागफल भी ऐसा ही है, जब तक कि शून्य से कोई विभाजन न हो।[1]* यदि और मापने योग्य कार्य हैं, तो उनकी रचना भी है [1]* यदि और मापने योग्य कार्य हैं, उनकी रचना जरूरत नहीं है -मापने योग्य जब तक वास्तव में, दो लेबेस्ग-मापने योग्य कार्यों का निर्माण इस तरह से किया जा सकता है कि उनकी रचना को गैर-लेबेस्ग-मापने योग्य बनाया जा सके।
- वास्तविक-मूल्यवान मापने योग्य कार्यों के अनुक्रम (अर्थात्, गणनीय रूप से कई) के (बिंदुवार) अंतिम , सबसे कम, निचली सीमा, और लिमिट हीन सभी मापनीय भी हैं।[1][4]
- मापने योग्य कार्यों के अनुक्रम की बिंदुवार सीमा मापने योग्य है, जहां मीट्रिक स्थान है (बोरेल बीजगणित के साथ संपन्न)। यह सामान्यतः सच नहीं है यदि गैर-मेट्रिजेबल है। निरंतर कार्यों के लिए संबंधित कथनों को बिंदुवार अभिसरण की तुलना में मजबूत स्थितियों की आवश्यकता होती है, जैसे वर्दी अभिसरण।[5][6]
गैर-मापने योग्य कार्य
अनुप्रयोगों में सामने आने वाले वास्तविक-मूल्यवान कार्य औसत अंकिते के होते हैं; चूँकि, गैर-मापने योग्य कार्यों के अस्तित्व को सिद्ध करना जटिल नहीं है। इस तरह के प्रमाण आवश्यक तरीके से पसंद के स्वयंसिद्ध पर निर्भर करते हैं, इस अर्थ में कि ज़र्मेलो-फ्रेंकेल समूह सिद्धांत पसंद के स्वयंसिद्ध के बिना ऐसे कार्यों के अस्तित्व को सिद्ध नहीं करता है।
किसी भी माप स्थान मेंगैर-मापने योग्य समूह के साथ गैर-मापने योग्य संकेतक समारोह का निर्माण कर सकता है:
अन्य उदाहरण के रूप में, कोई भी गैर-निरंतर कार्य तुच्छ के संबंध में गैर-मापने योग्य है -बीजगणित चूंकि सीमा में किसी भी बिंदु की पूर्वकल्पना कुछ उचित, गैर-खाली उपसमुच्चय है जो तुच्छ का तत्व नहीं है
यह भी देखें
- Bochner measurable function
- Bochner space
- Lp space - मापने योग्य कार्यों के वेक्टर रिक्त स्थान: एलपी स्थान | खाली स्थान
- Measure-preserving dynamical system
- Vector measure
- Weakly measurable function
टिप्पणियाँ
- ↑ 1.0 1.1 1.2 1.3 Strichartz, Robert (2000). विश्लेषण का तरीका. Jones and Bartlett. ISBN 0-7637-1497-6.
- ↑ Carothers, N. L. (2000). वास्तविक विश्लेषण. Cambridge University Press. ISBN 0-521-49756-6.
- ↑ Folland, Gerald B. (1999). Real Analysis: Modern Techniques and their Applications. Wiley. ISBN 0-471-31716-0.
- ↑ Royden, H. L. (1988). वास्तविक विश्लेषण. Prentice Hall. ISBN 0-02-404151-3.
- ↑ Dudley, R. M. (2002). वास्तविक विश्लेषण और संभावना (2 ed.). Cambridge University Press. ISBN 0-521-00754-2.
- ↑ Aliprantis, Charalambos D.; Border, Kim C. (2006). अनंत आयामी विश्लेषण, एक सहयात्री की मार्गदर्शिका (3 ed.). Springer. ISBN 978-3-540-29587-7.