अनुकूली नियंत्रण

From Vigyanwiki
Revision as of 09:36, 1 July 2023 by alpha>Akriti

अनुकूली नियंत्रण नियंत्रक द्वारा उपयोग की जाने वाली नियंत्रण विधि है जिसे नियंत्रित प्रणाली के लिए अनुकूल होना चाहिए जिसमें पैरामीटर भिन्न होते हैं, या प्रारंभ में अनिश्चित होते हैं।[1][2] उदाहरण के लिए, जैसे ही विमान उड़ता है, ईंधन की लागत के परिणामस्वरूप उसका द्रव्यमान धीरे-धीरे कम हो जाएगा; ऐसे नियंत्रण नियम की आवश्यकता है जो ऐसी परिवर्तित परिस्थितियों के अनुरूप स्वयं को ढाल सके। अनुकूली नियंत्रण दृढ़ नियंत्रण से इस कारण से भिन्न है कि इसमें इन अनिश्चित या समय-परिवर्तनशील मापदंडों की सीमाओं के विषय में पूर्व सूचना की आवश्यकता नहीं होती है; दृढ़ नियंत्रण यह गारंटी देता है कि यदि परिवर्तन दी गई सीमा के भीतर हैं तो नियंत्रण नियम को परिवर्तित करने की आवश्यकता नहीं है, जबकि अनुकूली नियंत्रण का संबंध नियंत्रण नियम को परिवर्तित करने से है।

पैरामीटर अनुमान

अनुकूली नियंत्रण का आधार पैरामीटर अनुमान है, जो प्रणाली अभिज्ञान की शाखा है। अनुमान की सामान्य विधियों में पुनरावर्ती न्यूनतम वर्ग और अनुप्रवण अवरोहण सम्मिलित हैं। ये दोनों विधियां अद्यतन नियम प्रदान करती हैं जिनका उपयोग वास्तविक समय में अनुमानों को संशोधित करने के लिए किया जाता है (अर्थात, जैसे प्रणाली संचालित होता है)। लायपुनोव स्थिरता का उपयोग इन अद्यतन नियमों को प्राप्त करने और अभिसरण मानदंड दिखाने के लिए किया जाता है (सामान्यतः निरंतर उत्तेजना; इस स्थिति में छूट का अध्ययन समवर्ती शिक्षण अनुकूली नियंत्रण में किया जाता है)। अनुमान एल्गोरिदम की दृढ़ता में सुधार के लिए सामान्यतः प्रक्षेपण (गणित) और सामान्यीकरण का उपयोग किया जाता है।

अनुकूली नियंत्रण तकनीकों का वर्गीकरण

सामान्यतः, किसी को इनमें अंतर करना चाहिए:

  1. फीडफॉरवर्ड अनुकूली नियंत्रण
  2. प्रतिक्रिया अनुकूली नियंत्रण

साथ ही बीच में भी

  1. प्रत्यक्ष विधि
  2. अप्रत्यक्ष विधि
  3. हाइब्रिड विधि

प्रत्यक्ष विधियाँ वे हैं जिनमें अनुमानित पैरामीटर प्रत्यक्षतः अनुकूली नियंत्रक में उपयोग किए जाते हैं। इसके विपरीत, अप्रत्यक्ष विधियाँ वे हैं जिनमें आवश्यक नियंत्रक मापदंडों की गणना के लिए अनुमानित मापदंडों का उपयोग किया जाता है।[3] हाइब्रिड विधियाँ मापदंडों के अनुमान और नियंत्रण नियम के प्रत्यक्ष संशोधन दोनों पर निर्भर करती हैं।

एमआरएसी
एक

फीडबैक अनुकूली नियंत्रण की कई व्यापक श्रेणियां हैं (वर्गीकरण भिन्न हो सकता है):

  • दोहरे अनुकूली नियंत्रक - दोहरे नियंत्रण सिद्धांत पर आधारित
    • इष्टतम दोहरे नियंत्रक - डिज़ाइन करना जटिल
    • उप-इष्टतम दोहरे नियंत्रक
  • अद्वैत अनुकूली नियंत्रक
    • अनुकूली स्तंभ नियुक्ति
    • परम चाहने वाले नियंत्रक
    • पुनरावृत्तीय अधिगम नियंत्रण
    • शेड्यूल प्राप्त करें
    • मॉडल संदर्भ अनुकूली नियंत्रक (एमआरएसी) - वांछित बंद लूप निष्पादन को परिभाषित करने वाला संदर्भ मॉडल सम्मिलित करें
      • अनुप्रवण ऑप्टिमाइज़ेशन एमआरएसी - जब निष्पादन संदर्भ से भिन्न होता है तो पैरामीटर समायोजित करने के लिए स्थानीय नियम का उपयोग करें। उदाहरण: एमआईटी नियम।
      • स्थिरता अनुकूलित एमआरएसी
    • मॉडल अभिज्ञान अनुकूली नियंत्रक (एमआईएसी) - प्रणाली चलने के समय प्रणाली अभिज्ञान करते हैं
      • सतर्क अनुकूली नियंत्रक - नियंत्रण नियम को संशोधित करने के लिए वर्तमान एसआई का उपयोग करते हैं, जिससे एसआई अनिश्चितता की अनुमति मिलती है
      • निश्चितता समकक्ष अनुकूली नियंत्रक - वर्तमान एसआई को वास्तविक प्रणाली मानें, कोई अनिश्चितता न मानें
        • गैरपैरामीट्रिक अनुकूली नियंत्रक
        • पैरामीट्रिक अनुकूली नियंत्रक
          • स्पष्ट पैरामीटर अनुकूली नियंत्रक
          • निहित पैरामीटर अनुकूली नियंत्रक
    • एकाधिक मॉडल - बड़ी संख्या में मॉडल का उपयोग करें, जो अनिश्चितता के क्षेत्र में वितरित होते हैं, और संयंत्र और मॉडल की प्रतिक्रियाओं पर आधारित होते हैं। प्रत्येक क्षण मॉडल चुना जाता है, जो कुछ मीट्रिक के अनुसार संयत्र के सबसे निकट होता है।[4]
कई मॉडलों के साथ अनुकूली नियंत्रण

अनुकूली नियंत्रण में कुछ विशेष विषयों को भी प्रस्तुत किया जा सकता है:

  1. अलग-अलग समय प्रक्रिया अभिज्ञान के आधार पर अनुकूली नियंत्रण
  2. मॉडल संदर्भ नियंत्रण तकनीक पर आधारित अनुकूली नियंत्रण[5]
  3. सतत-समय प्रक्रिया मॉडल पर आधारित अनुकूली नियंत्रण
  4. बहुपरिवर्तनीय प्रक्रियाओं का अनुकूली नियंत्रण[6]
  5. अरेखीय प्रक्रियाओं का अनुकूली नियंत्रण
  6. समवर्ती शिक्षण अनुकूली नियंत्रण, जो प्रणाली के वर्ग के लिए पैरामीटर अभिसरण के लिए निरंतर उत्तेजना पर स्थिति को आराम देता है[7][8]

वर्तमान दिनों में, फ़ज़ी अनुकूली नियंत्रण जैसी नवीन अवधारणाओं को सामने लाने के लिए अनुकूली नियंत्रण को फ़ज़ी और न्यूरल नेटवर्क जैसी बुद्धिमान तकनीकों के साथ विलय कर दिया गया है।

अनुप्रयोग

अनुकूली नियंत्रण प्रणालियों को डिजाइन करते समय, विकट: अभिसरण और दृढ़ता (कंप्यूटर विज्ञान) समस्याओं पर विशेष विचार आवश्यक है। ल्यपुनोव स्थिरता का उपयोग सामान्यतः नियंत्रण अनुकूलन नियमों को प्राप्त करने और दिखाने के लिए किया जाता है।

  • एक ऑपरेटिंग बिंदु के लिए कार्यान्वयन चरण के समय बाद में निर्धारित किए गए रैखिक नियंत्रकों की स्व-ट्यूनिंग;
  • संचालन बिंदुओं की पूर्ण श्रृंखला के लिए कार्यान्वयन चरण के समय बाद में निर्धारित किए गए दृढ़ नियंत्रकों की स्व-ट्यूनिंग;
  • यदि कालप्रभावन, बहाव, विघर्षण आदि के कारण प्रक्रिया व्यवहार में परिवर्तन होता है, तो अनुरोध पर निश्चित नियंत्रकों की स्व-ट्यूनिंग;
  • अरेखीय या समय-भिन्न प्रक्रियाओं के लिए रैखिक नियंत्रकों का अनुकूली नियंत्रण;
  • अरैखिक प्रक्रियाओं के लिए अरैखिक नियंत्रकों का अनुकूली नियंत्रण या स्व-ट्यूनिंग नियंत्रण;
  • बहुपरिवर्तनीय प्रक्रियाओं (एमआईएमओ प्रणाली) के लिए बहुपरिवर्तनीय नियंत्रकों का अनुकूली नियंत्रण या स्व-ट्यूनिंग नियंत्रण;

सामान्यतः ये विधियाँ नियंत्रकों को प्रक्रिया स्थैतिक और गतिशीलता दोनों के अनुकूल बनाती हैं। विशेष स्थितियों में अनुकूलन मात्र स्थैतिक व्यवहार तक ही सीमित हो सकता है, जिससे स्थिर-अवस्था के लिए विशेषता वक्रों के आधार पर अनुकूली नियंत्रण हो सकता है या परम मान नियंत्रण हो सकता है, जो स्थिर स्थिति को अनुकूलित कर सकता है। इसलिए, अनुकूली नियंत्रण एल्गोरिदम लागू करने के कई विधि हैं।

अनुकूली नियंत्रण का विशेष रूप से सफल अनुप्रयोग अनुकूली उड़ान नियंत्रण रहा है।[9][10] कार्य के इस निकाय ने ल्यपुनोव तर्कों का उपयोग करके मॉडल संदर्भ अनुकूली नियंत्रण योजना की स्थिरता की गारंटी पर ध्यान केंद्रित किया है। दोष-सहिष्णु अनुकूली नियंत्रण सहित कई सफल उड़ान-परीक्षण निष्पादन आयोजित किए गए हैं।[11]


यह भी देखें

संदर्भ

  1. Annaswamy, Anuradha M. (3 May 2023). "सुदृढीकरण सीखने के साथ अनुकूली नियंत्रण और अंतर्संबंध". Annual Review of Control, Robotics, and Autonomous Systems (in English). 6 (1): 65–93. doi:10.1146/annurev-control-062922-090153. ISSN 2573-5144. Retrieved 4 May 2023.
  2. Chengyu Cao, Lili Ma, Yunjun Xu (2012). ""अनुकूली नियंत्रण सिद्धांत और अनुप्रयोग", जर्नल ऑफ कंट्रोल साइंस एंड इंजीनियरिंग". 2012 (1): 1, 2. doi:10.1155/2012/827353. {{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link)
  3. Astrom, Karl (2008). अनुकूली नियंत्रण. Dover. pp. 25–26.
  4. Narendra, Kumpati S.; Han, Zhuo (August 2011). "एकाधिक मॉडलों से प्राप्त सामूहिक जानकारी का उपयोग करके अनुकूली नियंत्रण". IFAC Proceedings Volumes. 18 (1): 362–367. doi:10.3182/20110828-6-IT-1002.02237.
  5. Lavretsky, Eugene; Wise, Kevin (2013). मजबूत अनुकूली नियंत्रण. Springer London. pp. 317–353. ISBN 9781447143963.
  6. Tao, Gang (2014). "Multivariable adaptive control: A survey". Automatica. 50 (11): 2737–2764. doi:10.1016/j.automatica.2014.10.015.
  7. Chowdhary, Girish; Johnson, Eric (2011). "समवर्ती शिक्षण अनुकूली नियंत्रक का सिद्धांत और उड़ान-परीक्षण सत्यापन". Journal of Guidance, Control, and Dynamics. 34 (2): 592–607. Bibcode:2011JGCD...34..592C. doi:10.2514/1.46866.
  8. Chowdhary, Girish; Muehlegg, Maximillian; Johnson, Eric (2014). "उत्तेजना की निरंतरता के बिना अनुकूली नियंत्रकों के लिए घातीय पैरामीटर और ट्रैकिंग त्रुटि अभिसरण गारंटी". International Journal of Control. 87 (8): 1583–1603. Bibcode:2011JGCD...34..592C. doi:10.2514/1.46866.
  9. Lavretsky, Eugene (2015). "Robust and Adaptive Control Methods for Aerial Vehicles". मानवरहित हवाई वाहनों की पुस्तिका. pp. 675–710. doi:10.1007/978-90-481-9707-1_50. ISBN 978-90-481-9706-4.
  10. Kannan, Suresh K.; Chowdhary, Girish Vinayak; Johnson, Eric N. (2015). "Adaptive Control of Unmanned Aerial Vehicles: Theory and Flight Tests". मानवरहित हवाई वाहनों की पुस्तिका. pp. 613–673. doi:10.1007/978-90-481-9707-1_61. ISBN 978-90-481-9706-4.
  11. Chowdhary, Girish; Johnson, Eric N; Chandramohan, Rajeev; Kimbrell, Scott M; Calise, Anthony (2013). "एक्चुएटर विफलताओं और गंभीर संरचनात्मक क्षति के तहत हवाई जहाजों का मार्गदर्शन और नियंत्रण". Journal of Guidance, Control, and Dynamics. 36 (4): 1093–1104. Bibcode:2013JGCD...36.1093C. doi:10.2514/1.58028.


अग्रिम पठन

  • B. Egardt, Stability of Adaptive Controllers. New York: Springer-Verlag, 1979.
  • I. D. Landau, Adaptive Control: The Model Reference Approach. New York: Marcel Dekker, 1979.
  • P. A. Ioannou and J. Sun, Robust Adaptive Control. Upper Saddle River, NJ: Prentice-Hall, 1996.
  • K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems. Englewood Cliffs, NJ: Prentice Hall, 1989; Dover Publications, 2004.
  • S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence and Robustness. Prentice Hall, 1989.
  • K. J. Astrom and B. Wittenmark, Adaptive Control. Reading, MA: Addison-Wesley, 1995.
  • I. D. Landau, R. Lozano, and M. M’Saad, Adaptive Control. New York, NY: Springer-Verlag, 1998.
  • G. Tao, Adaptive Control Design and Analysis. Hoboken, NJ: Wiley-Interscience, 2003.
  • P. A. Ioannou and B. Fidan, Adaptive Control Tutorial. SIAM, 2006.
  • G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and Control. Englewood Cliffs, NJ: Prentice-Hall, 1984.
  • M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design. Wiley Interscience, 1995.
  • P. A. Ioannou and P. V. Kokotovic, Adaptive Systems with Reduced Models. Springer Verlag, 1983.
  • Annaswamy, Anuradha M.; Fradkov, Alexander L. (2021). "A historical perspective of adaptive control and learning". Annual Reviews in Control (in English). 52: 18–41. arXiv:2108.11336. doi:10.1016/j.arcontrol.2021.10.014. S2CID 237290042.


बाहरी संबंध