परिमित सांस्थितिक समष्टि
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (September 2016) (Learn how and when to remove this template message) |
गणित में परिमित सांस्थितिक समष्टि एक सांस्थितिक समष्टि है जिसके लिए अंतर्निहित बिंदु समुच्चय एक परिमित समुच्चय है। अर्थात्, यह एक सांस्थितिक समष्टि है जिसमें केवल सीमित रूप से कई तत्व होते हैं।
परिमित सांस्थितिक रिक्त समष्टि का उपयोग प्रायः दिलचस्प घटनाओं के उदाहरण या प्रशंसनीय लगने वाले अनुमानों के प्रति उदाहरण प्रदान करने के लिए किया जाता है। विलियम थर्स्टन ने इस अर्थ में परिमित सांस्थिति के अध्ययन को "एक अजीब विषय कहा है जो विभिन्न प्रकार के प्रश्नों के लिए अच्छी जानकारी दे सकता है"।[1]
एक सीमित समुच्चय पर सांस्थिति
माना कि एक परिमित समुच्चय है। पर एक सांस्थिति का एक उपसमुच्चय है जो कि का पावर समुच्चय है ऐसा है कि
- और .
- अगर तब .
- अगर तब .
दूसरे शब्दों में, का एक उपसमुच्चय एक सांस्थिति है यदि में और दोनों सम्मिलित हैं और अपेक्षाकृत रूप से यूनियनों और समुच्चय सिद्धांत के तहत बंद है। के तत्वों को विवृत समुच्चय कहा जाता है।सांस्थितिक रिक्त समष्टि के सामान्य विवरण के लिए आवश्यक है कि एक सांस्थिति को विवृत समुच्चयों के मनमाने (परिमित या अनंत) संघों के तहत बंद किया जाए, लेकिन केवल सीमित रूप से कई विवृत समुच्चयों के प्रतिच्छेदन के तहत। यहाँ वह भेद अनावश्यक है। चूँकि किसी परिमित समुच्चय का घात समुच्चय परिमित होता है, इसलिए केवल परिमित रूप से अनेक विवृत समुच्चय हो सकते हैं (और केवल परिमित रूप से अनेक बंद समुच्चय भी हो सकते हैं)।
एक परिमित समुच्चय पर एक सांस्थिति को के एक उप-जाल के रूप में भी सोचा जा सकता है जिसमें निचला तत्व और शीर्ष तत्व दोनों सम्मिलित हैं।
उदाहरण
0 या 1 अंक
रिक्त समुच्चय ∅ पर एक अद्वितीय सांस्थिति है। एकमात्र विवृत समुच्चय रिक्त है। वास्तव में, यह ∅ का एकमात्र उपसमुच्चय है।
इसी तरह, सिंगलटन समुच्चय {ए} पर एक अद्वितीय सांस्थिति है। यहां विवृत समुच्चय ∅ और {a} हैं। यह सांस्थिति असतत और तुच्छ सांस्थिति दोनों है, हालांकि कुछ मायनों में इसे एक असतत समष्टि के रूप में सोचना बेहतर है क्योंकि यह परिमित असतत रिक्त समष्टि के परिवार के साथ अधिक गुण साझा करता है।
किसी भी सांस्थितिक रिक्त X के लिए ∅ से X तक एक अद्वितीय निरंतर फलन होता है, अर्थात् रिक्त फलन से सिंगलटन समष्टि {ए} तक एक अद्वितीय निरंतर फलन भी है, अर्थात् ए के लिए निरंतर फलन। श्रेणी सिद्धांत की भाषा में रिक्त समष्टि सांस्थितिक समष्टि की श्रेणी में एक प्रारंभिक वस्तु के रूप में कार्य करता है जबकि सिंगलटन समष्टि एक टर्मिनल ऑब्जेक्ट के रूप में कार्य करता है।
2 अंक
मान लीजिए कि X = {a,b} 2 तत्वों वाला एक समुच्चय है। X पर चार अलग-अलग सांस्थिति हैं:
- {∅, {a,b}} (तुच्छ सांस्थिति)
- {∅, {a}, {a,b}}
- {∅, {b}, {a,b}}
- {∅, {a}, {b}, {a,b}} (असतत सांस्थिति)
उपरोक्त दूसरी और तीसरी सांस्थिति को आसानी से होमियोमोर्फिक के रूप में देखा जा सकता है। X से स्वयं तक का फलन जो a और b को स्वैप करता है, एक होमोमोर्फिज्म है। इनमें से एक के लिए एक सांस्थितिक समष्टि होमोमोर्फिक को सिएरपिंस्की समष्टि कहा जाता है। तो, वास्तव में, दो-बिंदु समुच्चय पर केवल तीन असमान सांस्थिति हैं: तुच्छ एक, असतत एक, और सिएरपिंस्की सांस्थिति।
सिएरपिंस्की समष्टि {a,b} पर {b} ओपन के साथ विशेषज्ञता प्रीऑर्डर a ≤ a, b ≤ b और a ≤ b द्वारा दिया गया है।
3 अंक
मान लीजिए कि X = {a,b,c} तीन तत्वों वाला एक समुच्चय है। X पर 29 अलग-अलग सांस्थिति हैं लेकिन केवल 9 असमान सांस्थिति हैं:
- {∅, {a,b,c}}
- {∅, {c}, {a,b,c}}
- {∅, {a,b}, {a,b,c}}
- {∅, {c}, {a,b}, {a,b,c}}
- {∅, {c}, {b,c}, {a,b,c}} (T0)
- {∅, {c}, {a,c}, {b,c}, {a,b,c}} (T0)
- {∅, {a}, {b}, {a,b}, {a,b,c}} (T0)
- {∅, {b}, {c}, {a,b}, {b,c}, {a,b,c}} (T0)
- {∅, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}} (T0)
इनमें से अंतिम 5 सभी T0 हैं। पहला तुच्छ है, जबकि 2, 3 और 4 में बिंदु a और b स्थलीय रूप से अप्रभेद्य हैं।
4 अंक
मान लीजिए कि X = {a,b,c,d} 4 तत्वों वाला एक समुच्चय है। एक्स पर 355 अलग-अलग सांस्थिति हैं लेकिन केवल 33 असमान सांस्थिति हैं:
- {∅, {a, b, c, d}}
- {∅, {a, b, c}, {a, b, c, d}}
- {∅, {a}, {a, b, c, d}}
- {∅, {a}, {a, b, c}, {a, b, c, d}}
- {∅, {a, b}, {a, b, c, d}}
- {∅, {a, b}, {a, b, c}, {a, b, c, d}}
- {∅, {a}, {a, b}, {a, b, c, d}}
- {∅, {a}, {b}, {a, b}, {a, b, c, d}}
- {∅, {a, b, c}, {d}, {a, b, c, d}}
- {∅, {a}, {a, b, c}, {a, d}, {a, b, c, d}}
- {∅, {a}, {a, b, c}, {d}, {a, d}, {a, b, c, d}}
- {∅, {a}, {b, c}, {a, b, c}, {a, d}, {a, b, c, d}}
- {∅, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}}
- {∅, {a, b}, {c}, {a, b, c}, {a, b, c, d}}
- {∅, {a, b}, {c}, {a, b, c}, {a, b, d}, {a, b, c, d}}
- {∅, {a, b}, {c}, {a, b, c}, {d}, {a, b, d}, {c, d}, {a, b, c, d}}
- {∅, {b, c}, {a, d}, {a, b, c, d}}
- {∅, {a}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
- {∅, {a}, {a, b}, {a, c}, {a, b, c}, {a, b, c, d}} (T0)
- {∅, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, b, c, d}} (T0)
- {∅, {a}, {a, b}, {a, b, c}, {a, b, c, d}} (T0)
- {∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, c, d}} (T0)
- {∅, {a}, {a, b}, {c}, {a, c}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
- {∅, {a}, {a, b}, {a, c}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
- {∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
- {∅, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
- {∅, {a}, {b}, {a, b}, {b, c}, {a, b, c}, {a, d}, {a, b, d}, {a, b, c, d}} (T0)
- {∅, {a}, {a, b}, {a, c}, {a, b, c}, {a, d}, {a, b, d}, {a, c, d}, {a, b, c, d}} (T0)
- {∅, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, d}, {a, b, d}, {a, c, d}, {a, b, c, d}} (T0)
- {∅, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
- {∅, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {a, d}, {a, b, d}, {a, c, d}, {a, b, c, d}} (T0)
- {∅, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {a, b, c, d}} (T0)
- {∅, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {d}, {a, d}, {b, d}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}} (T0)
इनमें से अंतिम 16 सभी T0 हैं।
गुण
विशेषज्ञता पूर्वआदेश
एक परिमित समुच्चय
एक (आवश्यक रूप से सीमित नहीं) सांस्थितिक समष्टि एक्स को देखते हुए हम एक्स पर पूर्व आदेश को परिभाषित कर सकते हैं
- x ≤ y यदि और केवल यदि x ∈ cl{y}
जहां cl{y} सिंगलटन समुच्चय {y} के बंद होने को दर्शाता है। इस प्रीऑर्डर को एक्स पर विशेषज्ञता प्रीऑर्डर कहा जाता है। एक्स का प्रत्येक विवृत समुच्चय यू ≤ के संबंध में एक ऊपरी समुच्चय होगा (यानी यदि x ∈ U और x ≤ y तो y ∈ U)। अब यदि X परिमित है तो इसका विपरीत भी सत्य है, प्रत्येक ऊपरी समुच्चय X में विवृत है। इसलिए परिमित समष्टि के लिए
दूसरी दिशा में जाने पर, मान लीजिए (X, ≤) एक पूर्व-आदेशित समुच्चय है। विवृत समुच्चयों को ≤ के संबंध में ऊपरी समुच्चय मानकर एक्स पर एक सांस्थिति τ को परिभाषित करें। तब संबंध ≤ (X, τ) का विशेषज्ञता पूर्वक्रम होगा। इस प्रकार परिभाषित सांस्थिति को ≤ द्वारा निर्धारित अलेक्जेंडर सांस्थिति कहा जाता है।
प्रीऑर्डर और परिमित सांस्थिति के बीच समानता की व्याख्या बिरखॉफ के प्रतिनिधित्व प्रमेय के एक संस्करण के रूप में की जा सकती है, जो परिमित वितरण जाली (सांस्थिति के विवृत समुच्चय की जाली) और आंशिक ऑर्डर (प्रीऑर्डर के समतुल्य वर्गों का आंशिक क्रम) के बीच एक समानता है। यह पत्राचार रिक्त समष्टि के एक बड़े वर्ग के लिए भी काम करता है जिसे परिमित रूप से उत्पन्न समष्टि कहा जाता है। अंतिम रूप से उत्पन्न समष्टि को उन समष्टि के रूप में वर्णित किया जा सकता है जिनमें विवृत समुच्चयों का एक मनमाना प्रतिच्छेदन विवृत है। परिमित सांस्थितिक रिक्त समष्टि परिमित रूप से उत्पन्न रिक्त समष्टि का एक विशेष वर्ग है।
संक्षिप्तता और गणनीयता
प्रत्येक परिमित सांस्थितिक समष्टि सघन होता है क्योंकि कोई भी विवृत आवरण पहले से ही परिमित होना चाहिए। वास्तव में, सघन समष्टि को प्रायः परिमित समष्टि के सामान्यीकरण के रूप में सोचा जाता है क्योंकि उनमें कई गुण समान होते हैं।
प्रत्येक परिमित सांस्थितिक समष्टि द्वितीय-गणनीय भी है (केवल सीमित रूप से कई विवृत समुच्चय हैं) और वियोज्य (क्योंकि समष्टि स्वयं गणनीय है)।
पृथक्करण अभिगृहीत
यदि एक परिमित सांस्थितिक समष्टि T1 है (विशेष रूप से, यदि यह हॉसडॉर्फ है) तो यह वास्तव में, अलग होना चाहिए। ऐसा इसलिए है क्योंकि एक बिंदु का पूरक बंद बिंदुओं का एक सीमित संघ है और इसलिए बंद है। इसका तात्पर्य यह है कि प्रत्येक बिंदु विवृत होना चाहिए।
इसलिए, कोई भी परिमित सांस्थितिक समष्टि जो असतत नहीं है, वह T1, हॉसडॉर्फ या कुछ भी मजबूत नहीं हो सकता है।
हालाँकि, एक गैर-असतत परिमित समष्टि का T0 होना संभव है। सामान्य तौर पर, दो बिंदु x और y सांस्थितिक रूप से अप्रभेद्य हैं यदि और केवल यदि x ≤ y और y ≤ x, जहां ≤ X पर विशेषज्ञता प्रीऑर्डर है। यह इस प्रकार है कि एक समष्टि X T0 है यदि और केवल यदि X पर विशेषज्ञता प्रीऑर्डर ≤ है आंशिक आदेश है. एक सीमित समुच्चय पर कई आंशिक ऑर्डर होते हैं। प्रत्येक एक अद्वितीय T0 सांस्थिति को परिभाषित करता है।
इसी प्रकार, एक समष्टि R0 है यदि और केवल यदि विशेषज्ञता प्रीऑर्डर एक तुल्यता संबंध है। किसी परिमित समुच्चय X पर किसी तुल्यता संबंध को देखते हुए संबद्ध सांस्थिति, चूँकि विभाजन सांस्थिति स्यूडोमेट्रिज़ेबल है, एक परिमित समष्टि R0 है यदि और केवल यदि यह पूरी तरह से नियमित है।
गैर-असतत परिमित समष्टि भी सामान्य हो सकते हैं। किसी भी परिमित समुच्चय पर बहिष्कृत बिंदु सांस्थिति एक पूरी तरह से सामान्य T0 समष्टि है जो गैर-अलग नहीं है।
कनेक्टिविटी
एक परिमित समष्टि एक परिमित समष्टि X की कनेक्टिविटी को संबंधित ग्राफ Γ की कनेक्टिविटी (ग्राफ़ सिद्धांत) पर विचार करके समझा जा सकता है।
किसी भी सांस्थितिक समष्टि में, यदि x ≤ y है तो x से y तक एक पथ है। t > 0 के लिए कोई आसानी से f(0) = x और f(t) = y ले सकता है। यह सत्यापित करना आसान है कि f निरंतर है। यह इस प्रकार है कि एक परिमित सांस्थितिक समष्टि के पथ घटक संबंधित ग्राफ़ के ठीक (कमजोर रूप से) जुड़े हुए घटक हैं। अर्थात्, x से y तक एक सांस्थितिक पथ है यदि और केवल यदि Γ के संगत शीर्षों के बीच कोई अप्रत्यक्ष पथ है।
प्रत्येक परिमित समष्टि समुच्चय के बाद से समष्टिीय रूप से पथ से जुड़ा हुआ है
x का एक पथ-जुड़ा हुआ विवृत पड़ोस है जो हर दूसरे पड़ोस में समाहित है। दूसरे शब्दों में, यह एकल समुच्चय x पर एक समष्टिीय आधार बनाता है।
इसलिए, एक परिमित समष्टि तभी जुड़ा होता है जब वह पथ से जुड़ा हो। जुड़े हुए घटक बिल्कुल पथ घटक हैं। ऐसा प्रत्येक घटक X में बंद और विवृत दोनों है।
परिमित समष्टि में मजबूत कनेक्टिविटी गुण हो सकते हैं। एक परिमित समष्टि X है
- हाइपरकनेक्टेड समष्टि यदि और केवल तभी जब विशेषज्ञता प्रीऑर्डर के संबंध में कोई सबसे बड़ा तत्व हो। यह एक ऐसा तत्व है जिसका समापन संपूर्ण समष्टि X है।
- अल्ट्राकनेक्टेड समष्टि यदि और केवल तभी जब विशेषज्ञता प्रीऑर्डर के संबंध में कम से कम तत्व हो। यह एक ऐसा तत्व है जिसका एकमात्र पड़ोस संपूर्ण अंतरिक्ष X है।
उदाहरण के लिए, एक परिमित समष्टि पर विशेष बिंदु सांस्थिति हाइपरकनेक्टेड है जबकि बहिष्कृत बिंदु सांस्थिति अल्ट्राकनेक्टेड है। सिएरपिंस्की समष्टि दोनों है।
अतिरिक्त संरचना
एक परिमित सांस्थितिक समष्टि स्यूडोमेट्रिज़ेबल है यदि और केवल यदि यह R0 है। इस मामले में, एक संभावित छद्ममिति द्वारा दिया गया है
जहां x ≡ y का अर्थ है x और y सांस्थितिक रूप से अप्रभेद्य हैं। एक परिमित सांस्थितिक समष्टि मेट्रिज़ेबल है यदि और केवल यदि यह असतत है।
इसी तरह, एक सांस्थितिक समष्टि एकरूपता योग्य है यदि और केवल यदि यह R0 है। एक समान संरचना उपरोक्त छद्ममिति से प्रेरित छद्ममितीय एकरूपता होगी।
बीजगणितीय सांस्थिति
शायद आश्चर्यजनक रूप से, गैर-तुच्छ मौलिक समूहों के साथ सीमित सांस्थितिक समष्टि हैं। एक सरल उदाहरण छद्म वृत्त है, जो अंतरिक्ष X है जिसमें चार बिंदु हैं, जिनमें से दो विवृत हैं और जिनमें से दो बंद हैं। यूनिट सर्कल S1 से इससे यह निष्कर्ष निकलता है कि छद्मवृत्त का मूल समूह अनंत चक्रीय है।
अधिक आम तौर पर यह दिखाया गया है कि किसी भी परिमित अमूर्त सरल जटिल K के लिए, एक परिमित सांस्थितिक समष्टि XK और एक कमजोर होमोटॉपी तुल्यता f: |K| → XK जहां |K| K का ज्यामितीय बोध है। यह इस प्रकार है कि |K| के समरूप समूह और XK समरूपी हैं। वास्तव में, XK के अंतर्निहित समुच्चय को K ही माना जा सकता है, जिसमें सांस्थिति समावेशन आंशिक क्रम से जुड़ी है।
एक सीमित समुच्चय पर सांस्थिति की संख्या
जैसा कि ऊपर चर्चा की गई है, एक सीमित समुच्चय पर सांस्थिति समुच्चय पर प्रीऑर्डर के साथ एक-से-एक पत्राचार में हैं, और टी0 सांस्थिति आंशिक ऑर्डर के साथ एक-से-एक पत्राचार में हैं। इसलिए, एक सीमित समुच्चय पर सांस्थिति की संख्या प्रीऑर्डर की संख्या के बराबर है और T0 सांस्थिति की संख्या आंशिक ऑर्डर की संख्या के बराबर है।
नीचे दी गई तालिका n तत्वों वाले समुच्चय पर विशिष्ट (T0) सांस्थिति की संख्या सूचीबद्ध करती है। यह असमान (अर्थात गैर-होमियोमोर्फिक) सांस्थिति की संख्या को भी सूचीबद्ध करता है।
n | अलग
टोपोलोजी |
विशिष्ट
T0 सांस्थिति |
असमान
सांस्थिति |
असमान
T0 सांस्थिति |
---|---|---|---|---|
0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 |
2 | 4 | 3 | 3 | 2 |
3 | 29 | 19 | 9 | 5 |
4 | 355 | 219 | 33 | 16 |
5 | 6942 | 4231 | 139 | 63 |
6 | 209527 | 130023 | 718 | 318 |
7 | 9535241 | 6129859 | 4535 | 2045 |
8 | 642779354 | 431723379 | 35979 | 16999 |
9 | 63260289423 | 44511042511 | 363083 | 183231 |
10 | 8977053873043 | 6611065248783 | 4717687 | 2567284 |
OEIS | A000798 | A001035 | A001930 | A000112 |
मान लीजिए T(n) n बिंदुओं वाले समुच्चय पर अलग-अलग सांस्थिति की संख्या को दर्शाता है। मनमाना n के लिए T(n) की गणना करने का कोई ज्ञात सरल सूत्र नहीं है। पूर्णांक अनुक्रमों का ऑनलाइन विश्वकोश वर्तमान में n ≤ 18 के लिए T(n) को सूचीबद्ध करता है।
N बिंदुओं वाले समुच्चय पर अलग-अलग T0 सांस्थिति की संख्या, जिसे T0(n) दर्शाया गया है, सूत्र द्वारा T(n) से संबंधित है
जहां S(n,k) दूसरे प्रकार की स्टर्लिंग संख्या को दर्शाता है।
यह भी देखें
संदर्भ
- ↑ Thurston, William P. (April 1994). गणित में प्रमाण और प्रगति पर. pp. 161–177. arXiv:math/9404236. doi:10.1090/S0273-0979-1994-00502-6.
{{cite book}}
:|journal=
ignored (help)
- Stong, Robert E. (1966). "Finite topological spaces" (PDF). Transactions of the American Mathematical Society. 123: 325–340. doi:10.1090/s0002-9947-1966-0195042-2. MR 0195042.
- McCord, Michael C. (1966). "Singular homology groups and homotopy groups of finite topological spaces" (PDF). Duke Math. J. 33 (3): 465–474. doi:10.1215/S0012-7094-66-03352-7.
- Barmak, Jonathan (2011). Algebraic Topology of Finite Topological Spaces and Applications. Springer. ISBN 978-3-642-22002-9.
- Merrifield, Richard; Simmons, Howard E. (1989). Topological Methods in Chemistry. Wiley. ISBN 978-0-471-83817-3.
बाहरी संबंध
- May, J.P. (2003). "Notes and reading materials on finite topological spaces" (PDF). Notes for REU.