अम्ब्रल कैलकुलस
1970 के दशक से पहले गणित में, अम्ब्रल कैलकुलस शब्द का तात्पर्य प्रतीत होता है कि असंबद्ध बहुपद समीकरणों और उन्हें सिद्ध करने के लिए उपयोग की जाने वाली कुछ अस्पष्ट तकनीकों के बीच आश्चर्यजनक समानता है। इन तकनीकों को जॉन ब्लिसार्ड द्वारा प्रस्तुत किया गया था और कभी-कभी इन्हें ब्लिसार्ड की प्रतीकात्मक विधि भी कहा जाता है।[1] इनका श्रेय अधिकांशतः एडौर्ड लुकास (या जेम्स जोसेफ सिल्वेस्टर) को दिया जाता है, जिन्होंने इस तकनीक का व्यापक रूप से उपयोग किया था।[2]
संक्षिप्त इतिहास
1930 और 1940 के दशक में, एरिक टेम्पल बेल ने अम्ब्रल कैलकुलस को कठोर स्तर पर स्थापित करने का प्रयास किया था।
1970 के दशक में, स्टीवन रोमन, जियान-कार्लो रोटा और अन्य ने बहुपदों के स्थानों पर रैखिक कार्यात्मकताओं के माध्यम से अम्ब्रल कैलकुलस विकसित किया था। वर्तमान में, अम्ब्रल कैलकुलस शेफ़र अनुक्रमों के अध्ययन को संदर्भित करता है, जिसमें द्विपद प्रकार के बहुपद अनुक्रम और एपेल अनुक्रम सम्मिलित हैं, लेकिन इसमें परिमित अंतरों के कलन की व्यवस्थित पत्राचार तकनीक सम्मिलित हो सकती है।
19वीं सदी का अम्ब्रल कैलकुलस
यह विधि एक सांकेतिक प्रक्रिया है जिसका उपयोग सूचकांकों को घातांक मानकर संख्याओं के अनुक्रमित अनुक्रमों से युक्त पहचान प्राप्त करने के लिए किया जाता है। शाब्दिक अर्थ में, यह विचित्र है, और फिर भी यह सफल है: अम्ब्रल कैलकुलस के माध्यम से प्राप्त पहचान को अधिक सम्मिश्र विधियों से भी उचित रूप से प्राप्त किया जा सकता है जिन्हें तार्किक कठिनाई के बिना शाब्दिक रूप से लिया जा सकता है।
एक उदाहरण में बर्नौली बहुपद सम्मिलित है। उदाहरण के लिए, सामान्य द्विपद विस्तार (जिसमें एक द्विपद गुणांक होता है) पर विचार करें:
और बर्नौली बहुपद पर उल्लेखनीय रूप से समान दिखने वाला संबंध:
सामान्य व्युत्पन्न की भी तुलना करें
बर्नौली बहुपद पर एक बहुत ही समान दिखने वाले संबंध के लिए:
ये समानताएं किसी को छत्र प्रमाण बनाने की अनुमति देती हैं, जो सतह पर, सही नहीं हो सकते हैं, लेकिन फिर भी काम करते प्रतीत होते हैं। इस प्रकार, उदाहरण के लिए, यह दिखावा करके कि सबस्क्रिप्ट n − k एक घातांक है:
और फिर अंतर करने पर वांछित परिणाम मिलता है:
उपरोक्त में, चर b एक अम्ब्रा (छाया के लिए लैटिन) है।
फ़ौल्हाबर का सूत्र भी देख सकते है।
अम्ब्रल टेलर श्रृंखला
अंतर कलन में, किसी फ़ंक्शन की टेलर श्रृंखला शब्दों का एक अनंत योग है जो एक ही बिंदु पर फ़ंक्शन के व्युत्पन्न के रूप में व्यक्त की जाती है। अर्थात्, एक वास्तविक-मूल्यवान फ़ंक्शन या सम्मिश्र-मूल्यवान फ़ंक्शन f (x) है, जो कि अनंत रूप से भिन्नात्मक फ़ंक्शन है जो, इस प्रकार लिखा जा सकता है:
परिमित भिन्नताओं के सिद्धांत में भी समान संबंध देखे गए है। टेलर श्रृंखला का छत्र संस्करण एक समान अभिव्यक्ति द्वारा दिया गया है जिसमें एक बहुपद फलन f के k-th आगे के अंतर सम्मिलित हैं,
जहाँ
यहां गिरते अनुक्रमिक उत्पाद के लिए पोचहैमर प्रतीक का उपयोग किया गया है। इसी प्रकार का संबंध पिछड़े मतभेदों और बढ़ते गुटबाजी के लिए भी है।
इस श्रृंखला को परिमित अंतर न्यूटन श्रृंखला या 'न्यूटन का अग्र अंतर विस्तार' के नाम से भी जाना जाता है। टेलर के विस्तार की सादृश्यता का उपयोग परिमित अंतरों की गणना में किया जाता है।
बेल और रिओर्डन
1930 और 1940 के दशक में, एरिक टेम्पल बेल ने इस प्रकार के तर्क को तार्किक रूप से कठोर बनाने का असफल प्रयास किया था। साहचर्य जॉन रिओर्डन (गणितज्ञ) ने 1960 के दशक में प्रकाशित अपनी पुस्तक कॉम्बिनेटरी आइडेंटिटीज़ में इस प्रकार की तकनीकों का बड़े पैमाने पर उपयोग किया था।
आधुनिक अम्ब्रल कैलकुलस
एक अन्य कॉम्बिनेटरियलिस्ट, जियान-कार्लो रोटा ने बताया कि यदि कोई z में बहुपदों पर रैखिक कार्यात्मक L पर विचार करता है तो रहस्य विलुप्त हो जाता है।
फिर, बर्नौली बहुपद की परिभाषा और L की परिभाषा और रैखिकता का उपयोग करके, कोई लिख सकता है,
यह किसी को की घटनाओं को से परिवर्तित करने में सक्षम बनाता है, यानी, n को सबस्क्रिप्ट से सुपरस्क्रिप्ट (अम्ब्रल कैलकुलस का मुख्य ऑपरेशन) में ले जाएं, उदाहरण के लिए, अब हम यह सिद्ध कर सकते हैं:
रोटा ने पश्चात में कहा कि इस विषय में अधिकांशतः होने वाले तीन तुल्यता संबंधों के बीच अंतर करने में विफलता के कारण बहुत भ्रम हुआ, जिनमें से सभी को = द्वारा दर्शाया गया था। 1964 में प्रकाशित एक पेपर में, रोटा ने बेल संख्याओं से संतुष्ट प्रत्यावर्तन सूत्र स्थापित करने के लिए अम्ब्रल विधियों का इस्तेमाल किया, जो परिमित समुच्चयों के एक समुच्चय के विभाजन की गणना करता है।
नीचे दिए गए रोमन और रोटा के पेपर में, अम्ब्रल कैलकुलस को अम्ब्रल बीजगणित के अध्ययन के रूप में वर्णित किया गया है, जिसे एक चर x में बहुपदों के सदिश स्थल पर रैखिक कार्यों के क्षेत्र पर बीजगणित के रूप में परिभाषित किया गया है। उत्पाद L1L2 द्वारा परिभाषित रैखिक कार्यात्मकताओं की है,
जब बहुपद अनुक्रम संख्याओं के अनुक्रम को yn की छवियों के रूप में प्रतिस्थापित करते हैं, रेखीय मानचित्रण L के अनुसार, तब अम्ब्रल विधि को रोटा के विशेष बहुपद के सामान्य सिद्धांत का एक अनिवार्य घटक माना जाता है, और वह सिद्धांत शब्द की कुछ और आधुनिक परिभाषाओं के अनुसार 'अम्ब्रल कैलकुलस' है।[3] उस सिद्धांत का एक छोटा सा नमूना द्विपद प्रकार पर लेख में पाया जा सकता है। दूसरा शेफ़र अनुक्रम शीर्षक वाला लेख है।
रोटा ने पश्चात में संचयी के विभिन्न संयोजन गुणों का अध्ययन करने के लिए शेन के साथ अपने पेपर में बड़े पैमाने पर अम्ब्रल कैलकुलस को लागू किया था।[4]
यह भी देखें
- बरनौली उम्बरा
- द्विपद प्रकार#बहुपद अनुक्रमों की छत्र रचना
- परिमित अंतरों की गणना
- पिडक बहुपद
- अपरिवर्तनीय सिद्धांत में प्रतीकात्मक विधि
- नारुमी बहुपद
टिप्पणियाँ
- ↑ *Blissard, John (1861). "Theory of generic equations". The Quarterly Journal of Pure and Applied Mathematics. 4: 279–305.
- ↑ E. T. Bell, "The History of Blissard's Symbolic Method, with a Sketch of its Inventor's Life", The American Mathematical Monthly 45:7 (1938), pp. 414–421.
- ↑ Rota, G. C.; Kahaner, D.; Odlyzko, A. (1973). "संयोजक सिद्धांत की नींव पर. आठवीं. परिमित संचालिका कलन". Journal of Mathematical Analysis and Applications. 42 (3): 684. doi:10.1016/0022-247X(73)90172-8.
- ↑ G.-C. Rota and J. Shen, "On the Combinatorics of Cumulants", Journal of Combinatorial Theory, Series A, 91:283–304, 2000.
संदर्भ
- Bell, E. T. (1938), "The History of Blissard's Symbolic Method, with a Sketch of its Inventor's Life", The American Mathematical Monthly, Mathematical Association of America, 45 (7): 414–421, doi:10.1080/00029890.1938.11990829, ISSN 0002-9890, JSTOR 2304144
- Roman, Steven M.; Rota, Gian-Carlo (1978), "The umbral calculus", Advances in Mathematics, 27 (2): 95–188, doi:10.1016/0001-8708(78)90087-7, ISSN 0001-8708, MR 0485417
- G.-C. Rota, D. Kahaner, and A. Odlyzko, "Finite Operator Calculus," Journal of Mathematical Analysis and its Applications, vol. 42, no. 3, June 1973. Reprinted in the book with the same title, Academic Press, New York, 1975.
- Roman, Steven (1984), The umbral calculus, Pure and Applied Mathematics, vol. 111, London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], ISBN 978-0-12-594380-2, MR 0741185. Reprinted by Dover, 2005.
- Roman, S. (2001) [1994], "Umbral calculus", Encyclopedia of Mathematics, EMS Press
बाहरी संबंध
- Weisstein, Eric W. "Umbral Calculus". MathWorld.
- A. Di Bucchianico, D. Loeb (2000). "A Selected Survey of Umbral Calculus" (PDF). Electronic Journal of Combinatorics. Dynamic Surveys. DS3. Archived from the original (PDF) on 2012-02-24.
- Roman, S. (1982), The Theory of the Umbral Calculus, I