गणित में, जैकब बर्नौली के नाम पर बर्नौली बहुपद , बर्नौली संख्या और द्विपद गुणांक के रूप में संयोजन होता है। इनका उपयोग फलन (गणित) के श्रृंखला विस्तार के लिए और यूलर-मैकलॉरिन सूत्र के साथ किया जाता है।
ये बहुपद कई विशेष फलन के अध्ययन के रूप में होते हैं और विशेष रूप से, रीमैन ज़ेटा फलन और हर्विट्ज़ ज़ेटा फलन के रूप में होते है। वे एक एपेल अनुक्रम हैं अर्थात सामान्य व्युत्पन्न ऑपरेटर के लिए एक शेफ़र अनुक्रम होते है। बर्नौली बहुपद के लिए इकाई अंतराल में x -अक्ष के क्रॉसिंग की संख्या बहुपद की डिग्री के साथ नहीं बढ़ती है। बड़ी मात्रा की सीमा में वे दृष्टिकोण करते हैं, जब समुचित रूप से स्केल किया जाता है, तो वे त्रिकोणमितीय फलन के रूप में पहुंचते हैं।
जनरेटिंग फलन के आधार पर बहुपदों का एक समान समुच्चय यूलर बहुपदों के समूह के रूप में होता है।
अभ्यावेदन
बर्नौली बहुपदBn जनरेटिंग फलन द्वारा परिभाषित किया जा सकता है। वे विभिन्न प्रकार के व्युत्पन्न अभ्यावेदन के रूप में स्वीकार करते हैं।
कार्य उत्पन्न करना
बर्नौली बहुपद के लिए जनक फलन है.
t e x t e t − 1 = ∑ n = 0 ∞ B n ( x ) t n n ! . {\displaystyle {\frac {te^{xt}}{e^{t}-1}}=\sum _{n=0}^{\infty }B_{n}(x){\frac {t^{n}}{n!}}.}
यूलर बहुपद के लिए जनक फलन है
2 e x t e t + 1 = ∑ n = 0 ∞ E n ( x ) t n n ! . {\displaystyle {\frac {2e^{xt}}{e^{t}+1}}=\sum _{n=0}^{\infty }E_{n}(x){\frac {t^{n}}{n!}}.}
स्पष्ट सूत्र
B n ( x ) = ∑ k = 0 n ( n k ) B n − k x k , {\displaystyle B_{n}(x)=\sum _{k=0}^{n}{n \choose k}B_{n-k}x^{k},}
E m ( x ) = ∑ k = 0 m ( m k ) E k 2 k ( x − 1 2 ) m − k . {\displaystyle E_{m}(x)=\sum _{k=0}^{m}{m \choose k}{\frac {E_{k}}{2^{k}}}\left(x-{\frac {1}{2}}\right)^{m-k}\,.}
n ≥ 0 के लिए, जहां Bk बर्नौली संख्याएं हैं, औरEk यूलर संख्याएँ हैं।
एक अंतर ऑपरेटर द्वारा प्रतिनिधित्व
बर्नोली बहुपदों के द्वारा भी दिया जाता है।
B n ( x ) = D e D − 1 x n {\displaystyle B_{n}(x)={D \over e^{D}-1}x^{n}}
जहां D = d/dx, x के संबंध में विभेदन है और अंश को औपचारिक शक्ति श्रृंखला के रूप में विस्तारित किया जाता है। यह इस प्रकार है कि
∫ a x B n ( u ) d u = B n + 1 ( x ) − B n + 1 ( a ) n + 1 . {\displaystyle \int _{a}^{x}B_{n}(u)~du={\frac {B_{n+1}(x)-B_{n+1}(a)}{n+1}}~.}
cf. समाकल. इसी प्रकार, यूलर बहुपद दिए गए हैं।
E n ( x ) = 2 e D + 1 x n . {\displaystyle E_{n}(x)={\frac {2}{e^{D}+1}}x^{n}.}
एक अभिन्न ऑपरेटर द्वारा प्रतिनिधित्व
बर्नोली बहुपदों के द्वारा निर्धारित अद्वितीय बहुपद के रूप में हैं।
∫ x x + 1 B n ( u ) d u = x n . {\displaystyle \int _{x}^{x+1}B_{n}(u)\,du=x^{n}.}
अभिन्न परिवर्तन
( T f ) ( x ) = ∫ x x + 1 f ( u ) d u {\displaystyle (Tf)(x)=\int _{x}^{x+1}f(u)\,du}
बहुपद f पर, बस इसका योग है
( T f ) ( x ) = e D − 1 D f ( x ) = ∑ n = 0 ∞ D n ( n + 1 ) ! f ( x ) = f ( x ) + f ′ ( x ) 2 + f ″ ( x ) 6 + f ‴ ( x ) 24 + ⋯ . {\displaystyle {\begin{aligned}(Tf)(x)={e^{D}-1 \over D}f(x)&{}=\sum _{n=0}^{\infty }{D^{n} \over (n+1)!}f(x)\\&{}=f(x)+{f'(x) \over 2}+{f''(x) \over 6}+{f'''(x) \over 24}+\cdots ~.\end{aligned}}}
इसका उपयोग नीचे दिए गए व्युत्क्रमण सूत्र के उत्पादन के लिए किया जा सकता है।
एक और स्पष्ट सूत्र
बर्नौली बहुपद के लिए एक स्पष्ट सूत्र दिया गया है
B m ( x ) = ∑ n = 0 m 1 n + 1 ∑ k = 0 n ( − 1 ) k ( n k ) ( x + k ) m . {\displaystyle B_{m}(x)=\sum _{n=0}^{m}{\frac {1}{n+1}}\sum _{k=0}^{n}(-1)^{k}{n \choose k}(x+k)^{m}.}
यह जटिल तल में हर्विट्ज़ ज़ेटा फलन के लिए श्रृंखला अभिव्यक्ति के समान है। वास्तव में, वहाँ समूह है
B n ( x ) = − n ζ ( 1 − n , x ) {\displaystyle B_{n}(x)=-n\zeta (1-n,x)}
जहां ζ (s , q ) हर्विट्ज़ ज़ेटा फलन है। उत्तरार्द्ध बर्नौली बहुपदों को सामान्यीकृत करता है, जो n के गैर पूर्णांक मानों की अनुमति देता है।
आंतरिक योग कोxm ; का nवाँ आगे का अंतर समझा जा सकता है, अर्थात्
Δ n x m = ∑ k = 0 n ( − 1 ) n − k ( n k ) ( x + k ) m {\displaystyle \Delta ^{n}x^{m}=\sum _{k=0}^{n}(-1)^{n-k}{n \choose k}(x+k)^{m}}
जहां Δ फॉरवर्ड डिफरेंस ऑपरेटर है। इस प्रकार कोई भी लिख सकता है
B m ( x ) = ∑ n = 0 m ( − 1 ) n n + 1 Δ n x m . {\displaystyle B_{m}(x)=\sum _{n=0}^{m}{\frac {(-1)^{n}}{n+1}}\,\Delta ^{n}x^{m}.}
यह सूत्र ऊपर दिखाई देने वाली पहचान से निम्नानुसार प्राप्त किया जा सकता है। चूंकि फॉरवर्ड अंतर ऑपरेटर Δ के बराबर है
Δ = e D − 1 {\displaystyle \Delta =e^{D}-1}
जहां D, x के संबंध में विभेदन है, हमारे पास मर्केटर श्रृंखला से है,
D e D − 1 = log ( Δ + 1 ) Δ = ∑ n = 0 ∞ ( − Δ ) n n + 1 . {\displaystyle {D \over e^{D}-1}={\log(\Delta +1) \over \Delta }=\sum _{n=0}^{\infty }{(-\Delta )^{n} \over n+1}.}
जब तक यह xm जैसे m thडिग्री बहुपद पर कार्य करता है, कोई n को 0 से केवल m तक ही जाने दे सकता है।
बर्नौली बहुपद के लिए एक अभिन्न प्रतिनिधित्व नॉरलुंड-राइस समाकल द्वारा दिया गया है, जो एक परिमित अंतर के रूप में अभिव्यक्ति का अनुसरण करता है।
यूलर बहुपद के लिए एक स्पष्ट सूत्र दिया गया है
E m ( x ) = ∑ n = 0 m 1 2 n ∑ k = 0 n ( − 1 ) k ( n k ) ( x + k ) m . {\displaystyle E_{m}(x)=\sum _{n=0}^{m}{\frac {1}{2^{n}}}\sum _{k=0}^{n}(-1)^{k}{n \choose k}(x+k)^{m}\,.}
उपरोक्त इस तथ्य का उपयोग करते हुए अनुरूप रूप से अनुसरण करता है
2 e D + 1 = 1 1 + Δ / 2 = ∑ n = 0 ∞ ( − Δ 2 ) n . {\displaystyle {\frac {2}{e^{D}+1}}={\frac {1}{1+\Delta /2}}=\sum _{n=0}^{\infty }{\Bigl (}-{\frac {\Delta }{2}}{\Bigr )}^{n}.}
पीटीएच शक्तियों का योग
मुख्य लेख: फ़ौल्हाबर का सूत्र
के एक अभिन्न ऑपरेटर द्वारा उपरोक्त प्रतिनिधित्व का उपयोग करते है x n {\displaystyle x^{n}} या अंतर और व्युत्पन्न B n ( x + 1 ) − B n ( x ) = n x n − 1 {\displaystyle B_{n}(x+1)-B_{n}(x)=nx^{n-1}} , अपने पास
∑ k = 0 x k p = ∫ 0 x + 1 B p ( t ) d t = B p + 1 ( x + 1 ) − B p + 1 p + 1 {\displaystyle \sum _{k=0}^{x}k^{p}=\int _{0}^{x+1}B_{p}(t)\,dt={\frac {B_{p+1}(x+1)-B_{p+1}}{p+1}}}
(मान लीजिए 00 =1).
बर्नौली और यूलर संख्या
बर्नौली संख्याएँ किसके द्वारा दी गई हैं? B n = B n ( 0 ) . {\displaystyle \textstyle B_{n}=B_{n}(0).}
यह परिभाषा देता है ζ ( − n ) = ( − 1 ) n n + 1 B n + 1 {\displaystyle \textstyle \zeta (-n)={\frac {(-1)^{n}}{n+1}}B_{n+1}} के लिए n = 0 , 1 , 2 , … {\displaystyle \textstyle n=0,1,2,\ldots } .
एक वैकल्पिक सम्मेलन बर्नौली संख्याओं को इस प्रकार परिभाषित करता है B n = B n ( 1 ) . {\displaystyle \textstyle B_{n}=B_{n}(1).}
दोनों सम्मेलन मात्र इसके लिए भिन्न हैं n = 1 {\displaystyle n=1} तब से B 1 ( 1 ) = 1 2 = − B 1 ( 0 ) {\displaystyle B_{1}(1)={\tfrac {1}{2}}=-B_{1}(0)} .
यूलर संख्याएँ किसके द्वारा दी गई हैं. E n = 2 n E n ( 1 2 ) . {\displaystyle E_{n}=2^{n}E_{n}({\tfrac {1}{2}}).}
निम्न डिग्री के लिए स्पष्ट अभिव्यक्ति
पहले कुछ बर्नौली बहुपद हैं:
B 0 ( x ) = 1 B 1 ( x ) = x − 1 2 B 2 ( x ) = x 2 − x + 1 6 B 3 ( x ) = x 3 − 3 2 x 2 + 1 2 x B 4 ( x ) = x 4 − 2 x 3 + x 2 − 1 30 B 5 ( x ) = x 5 − 5 2 x 4 + 5 3 x 3 − 1 6 x B 6 ( x ) = x 6 − 3 x 5 + 5 2 x 4 − 1 2 x 2 + 1 42 . {\displaystyle {\begin{aligned}B_{0}(x)&=1\\[8pt]B_{1}(x)&=x-{\frac {1}{2}}\\[8pt]B_{2}(x)&=x^{2}-x+{\frac {1}{6}}\\[8pt]B_{3}(x)&=x^{3}-{\frac {3}{2}}x^{2}+{\frac {1}{2}}x\\[8pt]B_{4}(x)&=x^{4}-2x^{3}+x^{2}-{\frac {1}{30}}\\[8pt]B_{5}(x)&=x^{5}-{\frac {5}{2}}x^{4}+{\frac {5}{3}}x^{3}-{\frac {1}{6}}x\\[8pt]B_{6}(x)&=x^{6}-3x^{5}+{\frac {5}{2}}x^{4}-{\frac {1}{2}}x^{2}+{\frac {1}{42}}.\end{aligned}}}
पहले कुछ यूलर बहुपद हैं:
E 0 ( x ) = 1 E 1 ( x ) = x − 1 2 E 2 ( x ) = x 2 − x E 3 ( x ) = x 3 − 3 2 x 2 + 1 4 E 4 ( x ) = x 4 − 2 x 3 + x E 5 ( x ) = x 5 − 5 2 x 4 + 5 2 x 2 − 1 2 E 6 ( x ) = x 6 − 3 x 5 + 5 x 3 − 3 x . {\displaystyle {\begin{aligned}E_{0}(x)&=1\\[8pt]E_{1}(x)&=x-{\frac {1}{2}}\\[8pt]E_{2}(x)&=x^{2}-x\\[8pt]E_{3}(x)&=x^{3}-{\frac {3}{2}}x^{2}+{\frac {1}{4}}\\[8pt]E_{4}(x)&=x^{4}-2x^{3}+x\\[8pt]E_{5}(x)&=x^{5}-{\frac {5}{2}}x^{4}+{\frac {5}{2}}x^{2}-{\frac {1}{2}}\\[8pt]E_{6}(x)&=x^{6}-3x^{5}+5x^{3}-3x.\end{aligned}}}
अधिकतम और न्यूनतम
उच्चतर n पर B में भिन्नता की मात्राn (x) x = 0 और x = 1 के बीच बड़ा हो जाता है। उदाहरण के लिए,
B 16 ( x ) = x 16 − 8 x 15 + 20 x 14 − 182 3 x 12 + 572 3 x 10 − 429 x 8 + 1820 3 x 6 − 1382 3 x 4 + 140 x 2 − 3617 510 {\displaystyle B_{16}(x)=x^{16}-8x^{15}+20x^{14}-{\frac {182}{3}}x^{12}+{\frac {572}{3}}x^{10}-429x^{8}+{\frac {1820}{3}}x^{6}-{\frac {1382}{3}}x^{4}+140x^{2}-{\frac {3617}{510}}}
जो दर्शाता है कि x = 0 (और x = 1) पर मान −3617/510 ≈ −7.09 है, जबकि x = 1/2 पर मान 118518239/3342336 +7.09 है। डी.एच. लेहमर[1] दिखाया कि B का अधिकतम मानn (x) 0 और 1 के बीच का पालन करता है
M n < 2 n ! ( 2 π ) n {\displaystyle M_{n}<{\frac {2n!}{(2\pi )^{n}}}}
जब तक कि n 2 मॉड्यूलो 4 न हो, उस स्थिति में
M n = 2 ζ ( n ) n ! ( 2 π ) n {\displaystyle M_{n}={\frac {2\zeta (n)n!}{(2\pi )^{n}}}}
जहाँ ζ ( x ) {\displaystyle \zeta (x)} रीमैन ज़ेटा फलन के रूप में है, जबकि न्यूनतम पालन करता है
m n > − 2 n ! ( 2 π ) n {\displaystyle m_{n}>{\frac {-2n!}{(2\pi )^{n}}}}
जब तक n 0 मॉड्यूलो 4 न हो, उस स्थिति में
m n = − 2 ζ ( n ) n ! ( 2 π ) n . {\displaystyle m_{n}={\frac {-2\zeta (n)n!}{(2\pi )^{n}}}.}
ये सीमाएँ वास्तविक अधिकतम और न्यूनतम के काफी करीब हैं, और लेहमर अधिक सटीक सीमाएँ भी देता है।
अंतर और व्युत्पन्न
बर्नौली और यूलर बहुपद, अम्ब्रल कैलकुलस के कई संबंधों का पालन करते हैं:
Δ B n ( x ) = B n ( x + 1 ) − B n ( x ) = n x n − 1 , {\displaystyle \Delta B_{n}(x)=B_{n}(x+1)-B_{n}(x)=nx^{n-1},}
Δ E n ( x ) = E n ( x + 1 ) − E n ( x ) = 2 ( x n − E n ( x ) ) . {\displaystyle \Delta E_{n}(x)=E_{n}(x+1)-E_{n}(x)=2(x^{n}-E_{n}(x)).}
Δ फॉरवर्ड डिफरेंस ऑपरेटर है।
E n ( x + 1 ) + E n ( x ) = 2 x n . {\displaystyle E_{n}(x+1)+E_{n}(x)=2x^{n}.}
ये बहुपद अनुक्रम एपेल अनुक्रम हैं:
B n ′ ( x ) = n B n − 1 ( x ) , {\displaystyle B_{n}'(x)=nB_{n-1}(x),}
E n ′ ( x ) = n E n − 1 ( x ) . {\displaystyle E_{n}'(x)=nE_{n-1}(x).}
अनुवाद
B n ( x + y ) = ∑ k = 0 n ( n k ) B k ( x ) y n − k {\displaystyle B_{n}(x+y)=\sum _{k=0}^{n}{n \choose k}B_{k}(x)y^{n-k}}
E n ( x + y ) = ∑ k = 0 n ( n k ) E k ( x ) y n − k {\displaystyle E_{n}(x+y)=\sum _{k=0}^{n}{n \choose k}E_{k}(x)y^{n-k}}
ये पहचानें यह कहने के बराबर हैं कि ये बहुपद अनुक्रम एपेल अनुक्रम हैं। हर्माइट बहुपद एक और उदाहरण हैं।
समरूपता
B n ( 1 − x ) = ( − 1 ) n B n ( x ) , n ≥ 0 , {\displaystyle B_{n}(1-x)=(-1)^{n}B_{n}(x),\quad n\geq 0,}
E n ( 1 − x ) = ( − 1 ) n E n ( x ) {\displaystyle E_{n}(1-x)=(-1)^{n}E_{n}(x)}
( − 1 ) n B n ( − x ) = B n ( x ) + n x n − 1 {\displaystyle (-1)^{n}B_{n}(-x)=B_{n}(x)+nx^{n-1}}
( − 1 ) n E n ( − x ) = − E n ( x ) + 2 x n {\displaystyle (-1)^{n}E_{n}(-x)=-E_{n}(x)+2x^{n}}
B n ( 1 2 ) = ( 1 2 n − 1 − 1 ) B n , n ≥ 0 from the multiplication theorems below. {\displaystyle B_{n}\left({\frac {1}{2}}\right)=\left({\frac {1}{2^{n-1}}}-1\right)B_{n},\quad n\geq 0{\text{ from the multiplication theorems below.}}}
ज़्ही वीहाय सन और डीएचए ऑप प्रेस [2] निम्नलिखित आश्चर्यजनक समरूपता संबंध स्थापित किया: यदि r + s + t = n और x + y + z = 1 , तब
r [ s , t ; x , y ] n + s [ t , r ; y , z ] n + t [ r , s ; z , x ] n = 0 , {\displaystyle r[s,t;x,y]_{n}+s[t,r;y,z]_{n}+t[r,s;z,x]_{n}=0,}
जहाँ
[ s , t ; x , y ] n = ∑ k = 0 n ( − 1 ) k ( s k ) ( t n − k ) B n − k ( x ) B k ( y ) . {\displaystyle [s,t;x,y]_{n}=\sum _{k=0}^{n}(-1)^{k}{s \choose k}{t \choose {n-k}}B_{n-k}(x)B_{k}(y).}
फूरियर श्रृंखला
बर्नौली बहुपद की फूरियर श्रृंखला भी एक डिरिचलेट श्रृंखला है, जो विस्तार द्वारा दी गई है
B n ( x ) = − n ! ( 2 π i ) n ∑ k ≠ 0 e 2 π i k x k n = − 2 n ! ∑ k = 1 ∞ cos ( 2 k π x − n π 2 ) ( 2 k π ) n . {\displaystyle B_{n}(x)=-{\frac {n!}{(2\pi i)^{n}}}\sum _{k\not =0}{\frac {e^{2\pi ikx}}{k^{n}}}=-2n!\sum _{k=1}^{\infty }{\frac {\cos \left(2k\pi x-{\frac {n\pi }{2}}\right)}{(2k\pi )^{n}}}.}
उपयुक्त रूप से स्केल किए गए त्रिकोणमितीय कार्यों के लिए सरल बड़ी n सीमा पर ध्यान दें।
यह हर्विट्ज़ ज़ेटा फलन के अनुरूप रूप का एक विशेष मामला है
B n ( x ) = − Γ ( n + 1 ) ∑ k = 1 ∞ exp ( 2 π i k x ) + e i π n exp ( 2 π i k ( 1 − x ) ) ( 2 π i k ) n . {\displaystyle B_{n}(x)=-\Gamma (n+1)\sum _{k=1}^{\infty }{\frac {\exp(2\pi ikx)+e^{i\pi n}\exp(2\pi ik(1-x))}{(2\pi ik)^{n}}}.}
यह विस्तार केवल 0 ≤ x ≤ 1 के लिए मान्य है जब n ≥ 2 और 0 < x < 1 के लिए मान्य है जब n = 1।
यूलर बहुपदों की फूरियर श्रृंखला की भी गणना की जा सकती है। कार्यों को परिभाषित करना होता है.
C ν ( x ) = ∑ k = 0 ∞ cos ( ( 2 k + 1 ) π x ) ( 2 k + 1 ) ν {\displaystyle C_{\nu }(x)=\sum _{k=0}^{\infty }{\frac {\cos((2k+1)\pi x)}{(2k+1)^{\nu }}}}
और
S ν ( x ) = ∑ k = 0 ∞ sin ( ( 2 k + 1 ) π x ) ( 2 k + 1 ) ν {\displaystyle S_{\nu }(x)=\sum _{k=0}^{\infty }{\frac {\sin((2k+1)\pi x)}{(2k+1)^{\nu }}}}
के लिए ν > 1 {\displaystyle \nu >1} , यूलर बहुपद में फूरियर श्रृंखला है
C 2 n ( x ) = ( − 1 ) n 4 ( 2 n − 1 ) ! π 2 n E 2 n − 1 ( x ) {\displaystyle C_{2n}(x)={\frac {(-1)^{n}}{4(2n-1)!}}\pi ^{2n}E_{2n-1}(x)}
और
S 2 n + 1 ( x ) = ( − 1 ) n 4 ( 2 n ) ! π 2 n + 1 E 2 n ( x ) . {\displaystyle S_{2n+1}(x)={\frac {(-1)^{n}}{4(2n)!}}\pi ^{2n+1}E_{2n}(x).}
ध्यान दें कि C ν {\displaystyle C_{\nu }} और S ν {\displaystyle S_{\nu }} क्रमशः विषम और सम हैं:
C ν ( x ) = − C ν ( 1 − x ) {\displaystyle C_{\nu }(x)=-C_{\nu }(1-x)}
और
S ν ( x ) = S ν ( 1 − x ) . {\displaystyle S_{\nu }(x)=S_{\nu }(1-x).}
वे लीजेंड्रे ची फलन से संबंधित हैं χ ν {\displaystyle \chi _{\nu }} जैसा
C ν ( x ) = Re χ ν ( e i x ) {\displaystyle C_{\nu }(x)=\operatorname {Re} \chi _{\nu }(e^{ix})}
और
S ν ( x ) = Im χ ν ( e i x ) . {\displaystyle S_{\nu }(x)=\operatorname {Im} \chi _{\nu }(e^{ix}).}
व्युक्रम
एकपद को बहुपद के रूप में व्यक्त करने के लिए बर्नौली और यूलर बहुपद को उल्टा किया जा सकता है।
विशेष रूप से, एक इंटीग्रल ऑपरेटर द्वारा प्रतिनिधित्व पर उपरोक्त अनुभाग से स्पष्ट रूप से, यह इस प्रकार है
x n = 1 n + 1 ∑ k = 0 n ( n + 1 k ) B k ( x ) {\displaystyle x^{n}={\frac {1}{n+1}}\sum _{k=0}^{n}{n+1 \choose k}B_{k}(x)}
और
x n = E n ( x ) + 1 2 ∑ k = 0 n − 1 ( n k ) E k ( x ) . {\displaystyle x^{n}=E_{n}(x)+{\frac {1}{2}}\sum _{k=0}^{n-1}{n \choose k}E_{k}(x).}
फॉलिंग फैक्टोरियल से संबंध
घटते भाज्य संबंधी के संदर्भ में बर्नौली बहुपद का विस्तार किया जा सकता है ( x ) k {\displaystyle (x)_{k}} जैसा
B n + 1 ( x ) = B n + 1 + ∑ k = 0 n n + 1 k + 1 { n k } ( x ) k + 1 {\displaystyle B_{n+1}(x)=B_{n+1}+\sum _{k=0}^{n}{\frac {n+1}{k+1}}\left\{{\begin{matrix}n\\k\end{matrix}}\right\}(x)_{k+1}}
कहाँ B n = B n ( 0 ) {\displaystyle B_{n}=B_{n}(0)} और
{ n k } = S ( n , k ) {\displaystyle \left\{{\begin{matrix}n\\k\end{matrix}}\right\}=S(n,k)}
दूसरी तरह की स्टर्लिंग संख्या को दर्शाता है। बर्नौली बहुपद के संदर्भ में गिरते तथ्यात्मक को व्यक्त करने के लिए उपरोक्त को व्युक्रम किया जा सकता है:
( x ) n + 1 = ∑ k = 0 n n + 1 k + 1 [ n k ] ( B k + 1 ( x ) − B k + 1 ) {\displaystyle (x)_{n+1}=\sum _{k=0}^{n}{\frac {n+1}{k+1}}\left[{\begin{matrix}n\\k\end{matrix}}\right]\left(B_{k+1}(x)-B_{k+1}\right)}
जहाँ
[ n k ] = s ( n , k ) {\displaystyle \left[{\begin{matrix}n\\k\end{matrix}}\right]=s(n,k)}
पहली तरह की स्टर्लिंग संख्या को दर्शाता है।
गुणन प्रमेय जोसेफ लुडविग राबे द्वारा 1851 में दिए गए थे:
एक प्राकृतिक संख्या के लिए m ≥1 ,
B n ( m x ) = m n − 1 ∑ k = 0 m − 1 B n ( x + k m ) {\displaystyle B_{n}(mx)=m^{n-1}\sum _{k=0}^{m-1}B_{n}\left(x+{\frac {k}{m}}\right)}
E n ( m x ) = m n ∑ k = 0 m − 1 ( − 1 ) k E n ( x + k m ) for m = 1 , 3 , … {\displaystyle E_{n}(mx)=m^{n}\sum _{k=0}^{m-1}(-1)^{k}E_{n}\left(x+{\frac {k}{m}}\right)\quad {\mbox{ for }}m=1,3,\dots }
E n ( m x ) = − 2 n + 1 m n ∑ k = 0 m − 1 ( − 1 ) k B n + 1 ( x + k m ) for m = 2 , 4 , … {\displaystyle E_{n}(mx)={\frac {-2}{n+1}}m^{n}\sum _{k=0}^{m-1}(-1)^{k}B_{n+1}\left(x+{\frac {k}{m}}\right)\quad {\mbox{ for }}m=2,4,\dots }
समाकलन
बर्नौली और यूलर बहुपदों को बर्नौली और यूलर संख्याओं से संबंधित दो निश्चित समाकलन के अंग हैं:[3]
∫ 0 1 B n ( t ) B m ( t ) d t = ( − 1 ) n − 1 m ! n ! ( m + n ) ! B n + m for m , n ≥ 1 {\displaystyle \int _{0}^{1}B_{n}(t)B_{m}(t)\,dt=(-1)^{n-1}{\frac {m!\;n!}{(m+n)!}}B_{n+m}\quad {\text{for }}m,n\geq 1}
∫ 0 1 E n ( t ) E m ( t ) d t = ( − 1 ) n 4 ( 2 m + n + 2 − 1 ) m ! n ! ( m + n + 2 ) ! B n + m + 2 {\displaystyle \int _{0}^{1}E_{n}(t)E_{m}(t)\,dt=(-1)^{n}4(2^{m+n+2}-1){\frac {m!\;n!}{(m+n+2)!}}B_{n+m+2}}
एक अन्य अभिन्न सूत्र बताता है[4]
∫ 0 1 E n ( x + y ) log ( tan π 2 x ) d x = n ! ∑ k = 1 ⌊ n + 1 2 ⌋ ( − 1 ) k − 1 π 2 k ( 2 − 2 − 2 k ) ζ ( 2 k + 1 ) y n + 1 − 2 k ( n + 1 − 2 k ) ! {\displaystyle \int _{0}^{1}E_{n}\left(x+y\right)\log(\tan {\frac {\pi }{2}}x)\,dx=n!\sum _{k=1}^{\left\lfloor {\frac {n+1}{2}}\right\rfloor }{\frac {(-1)^{k-1}}{\pi ^{2k}}}\left(2-2^{-2k}\right)\zeta (2k+1){\frac {y^{n+1-2k}}{(n+1-2k)!}}}
के लिए विशेष स्थिति के साथ y = 0 {\displaystyle y=0} इस प्रकार है
∫ 0 1 E 2 n − 1 ( x ) log ( tan π 2 x ) d x = ( − 1 ) n − 1 ( 2 n − 1 ) ! π 2 n ( 2 − 2 − 2 n ) ζ ( 2 n + 1 ) {\displaystyle \int _{0}^{1}E_{2n-1}\left(x\right)\log(\tan {\frac {\pi }{2}}x)\,dx={\frac {(-1)^{n-1}(2n-1)!}{\pi ^{2n}}}\left(2-2^{-2n}\right)\zeta (2n+1)}
∫ 0 1 B 2 n − 1 ( x ) log ( tan π 2 x ) d x = ( − 1 ) n − 1 π 2 n 2 2 n − 2 ( 2 n − 1 ) ! ∑ k = 1 n ( 2 2 k + 1 − 1 ) ζ ( 2 k + 1 ) ζ ( 2 n − 2 k ) {\displaystyle \int _{0}^{1}B_{2n-1}\left(x\right)\log(\tan {\frac {\pi }{2}}x)\,dx={\frac {(-1)^{n-1}}{\pi ^{2n}}}{\frac {2^{2n-2}}{(2n-1)!}}\sum _{k=1}^{n}(2^{2k+1}-1)\zeta (2k+1)\zeta (2n-2k)}
∫ 0 1 E 2 n ( x ) log ( tan π 2 x ) d x = ∫ 0 1 B 2 n ( x ) log ( tan π 2 x ) d x = 0 {\displaystyle \int _{0}^{1}E_{2n}\left(x\right)\log(\tan {\frac {\pi }{2}}x)\,dx=\int _{0}^{1}B_{2n}\left(x\right)\log(\tan {\frac {\pi }{2}}x)\,dx=0}
∫ 0 1 B 2 n − 1 ( x ) cot ( π x ) d x = 2 ( 2 n − 1 ) ! ( − 1 ) n − 1 ( 2 π ) 2 n − 1 ζ ( 2 n − 1 ) {\displaystyle \int _{0}^{1}{{{B}_{2n-1}}\left(x\right)\cot \left(\pi x\right)dx}={\frac {2\left(2n-1\right)!}{{{\left(-1\right)}^{n-1}}{{\left(2\pi \right)}^{2n-1}}}}\zeta \left(2n-1\right)}
पीरिऑडिक बर्नौली बहुपद
पीरिऑडिक बर्नौली बहुपद P n (x ) एक बर्नौली बहुपद है जिसका मूल्यांकन तर्क x के भिन्नात्मक भाग में किया जाता है।. इन फलन का उपयोग इंटीग्रल के योग से संबंधित यूलर-मैकलॉरिन फ़ॉर्मूले में शेष पद प्रदान करने के लिए किया जाता है। पहला बहुपद सॉटूथ तरंग है।
सख्ती से ये फलन बिल्कुल भी बहुपद नहीं हैं और अधिक उचित रूप से इन्हें पीरिऑडिक बर्नौली फलन कहा जाना चाहिए, और P 0 (x ) एक फलन भी नहीं है, क्योंकि यह सॉटूथ और इसलिए डायराक कंघी का व्युत्पन्न है।
निम्नलिखित संपत्तियाँ रुचिकर हैं, सभी के लिए मान्य हैं x {\displaystyle x} :
P k ( x ) is continuous for all k > 1 P k ′ ( x ) exists and is continuous for k > 2 P k ′ ( x ) = k P k − 1 ( x ) , k > 2 {\displaystyle {\begin{aligned}&P_{k}(x){\text{ is continuous for all }}k>1\\[5pt]&P_{k}'(x){\text{ exists and is continuous for }}k>2\\[5pt]&P'_{k}(x)=kP_{k-1}(x),k>2\end{aligned}}}
यह भी देखें
संदर्भ
Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , (1972) Dover, New York. (See Chapter 23)
Apostol, Tom M. (1976), Introduction to analytic number theory , Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3 , MR 0434929 , Zbl 0335.10001 (See chapter 12.11)
Dilcher, K. (2010), "Bernoulli and Euler Polynomials" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248
Cvijović, Djurdje; Klinowski, Jacek (1995). "New formulae for the Bernoulli and Euler polynomials at rational arguments" . Proceedings of the American Mathematical Society . 123 (5): 1527–1535. doi :10.1090/S0002-9939-1995-1283544-0 . JSTOR 2161144 .
Guillera, Jesus; Sondow, Jonathan (2008). "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent". The Ramanujan Journal . 16 (3): 247–270. arXiv :math.NT/0506319 . doi :10.1007/s11139-007-9102-0 . S2CID 14910435 . (Reviews relationship to the Hurwitz zeta function and Lerch transcendent.)
Hugh L. Montgomery ; Robert C. Vaughan (2007). Multiplicative number theory I. Classical theory . Cambridge tracts in advanced mathematics. Vol. 97. Cambridge: Cambridge Univ. Press. pp. 495–519. ISBN 978-0-521-84903-6 .
बाहरी संबंध