प्राथमिक एबेलियन समूह
बीजगणितीय संरचना → 'समूह सिद्धांत' समूह सिद्धांत |
---|
This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: do not assume finite unless stated. (April 2015) (Learn how and when to remove this template message) |
गणित में, विशेष रूप से समूह सिद्धांत में, एक प्राथमिक एबेलियन समूह एक एबेलियन समूह होता है जिसमें पहचान के अतिरिक्त अन्य सभी तत्वों का क्रम समान होता है। यह सामान्य क्रम एक अभाज्य संख्या होना चाहिए, और प्राथमिक एबेलियन समूह जिनमें सामान्य क्रम p है, एक विशेष प्रकार के p-समूह हैं|पी-समूह।[1][2] एक समूह जिसके लिए p = 2 (अर्थात, एक प्राथमिक एबेलियन 2-समूह) को कभी-कभी 'बूलियन समूह' कहा जाता है।[3]
प्रत्येक प्राथमिक एबेलियन p-समूह p तत्वों के साथ प्रधान क्षेत्र पर एक सदिश स्थल है, और इसके विपरीत प्रत्येक ऐसा वेक्टर स्पेस एक प्राथमिक एबेलियन समूह है।
परिमित रूप से उत्पन्न एबेलियन समूहों के वर्गीकरण द्वारा, या इस तथ्य से कि प्रत्येक वेक्टर स्थान का एक आधार (वेक्टर स्थान) होता है, प्रत्येक परिमित प्राथमिक एबेलियन समूह का रूप (Z/pZ)n होना चाहिए। n के लिए एक गैर-नकारात्मक पूर्णांक (कभी-कभी समूह की रैंक भी कहा जाता है)। यहां, 'Z'/p'Z' क्रम p के चक्रीय समूह (या समतुल्य पूर्णांक मॉड्यूलर अंकगणित p) को दर्शाता है, और सुपरस्क्रिप्ट नोटेशन का अर्थ समूहों का n-गुना प्रत्यक्ष उत्पाद है।[2]
सामान्यतः, एक (संभवतः अनंत) प्राथमिक एबेलियन p-समूह क्रम p के चक्रीय समूहों के एबेलियन समूहों का प्रत्यक्ष योग # प्रत्यक्ष योग है।[4] (ध्यान दें कि परिमित स्थितियों में प्रत्यक्ष उत्पाद और प्रत्यक्ष योग मेल खाते हैं, लेकिन अनंत स्थितियों में ऐसा नहीं है।)
इस लेख के शेष भाग में, सभी समूहों को परिमित समूह माना गया है।
उदाहरण और गुण
- प्राथमिक एबेलियन समूह (Z/2Z)2 के चार तत्व हैं: {(0,0), (0,1), (1,0), (1,1)} . परिणाम को मॉड्यूलो 2 लेते हुए, जोड़ को घटकवार निष्पादित किया जाता है। उदाहरण के लिए, (1,0) + (1,1) = (0,1). यह वास्तव में क्लेन चार-समूह है।
- एक (जरूरी नहीं कि परिमित) सेट पर सममित अंतर से उत्पन्न समूह में, प्रत्येक तत्व का क्रम 2 होता है। ऐसा कोई भी समूह आवश्यक रूप से एबेलियन है, क्योंकि प्रत्येक तत्व का अपना व्युत्क्रम है, xy = (xy)−1 = और−1x−1=yx. ऐसा समूह (जिसे बूलियन समूह भी कहा जाता है), क्लेन चार-समूह उदाहरण को घटकों की मनमानी संख्या में सामान्यीकृत करता है।
- (Z/pZ)n तत्वों द्वारा उत्पन्न होता है, और n जनरेटर की न्यूनतम संभव संख्या है। विशेष रूप से, सेट {e1, ..., en} , जहां ei Ith घटक में 1 है और अन्यत्र 0 है, यह एक न्यूनतम जनरेटिंग सेट है।
- प्रत्येक प्रारंभिक एबेलियन समूह में एक समूह की बहुत सरल प्रस्तुति होती है।
वेक्टर स्पेस संरचना
मान लीजिए V(Z/pZ)n एक प्राथमिक एबेलियन समूह है। चूँकि 'Z'/p'Z' Fp, p तत्वों का परिमित क्षेत्र, हमारे पास V = ('Z'/p'Z') हैn Fpn, इसलिए V को फ़ील्ड 'Fp' पर एक n-आयामी वेक्टर स्थान माना जा सकता है. ध्यान दें कि प्राथमिक एबेलियन समूह का आमतौर पर कोई विशिष्ट आधार नहीं होता है: समरूपता का V(Z/pZ)n आधार की पसंद से मेल खाता है।
यदि हम अपना ध्यान V के स्वप्रतिरूपणों तक ही सीमित रखें तो हमारे पास Aut(V) = { T : V → V | ker T = 0 } = GLn(Fp), Fp. पर n × n व्युत्क्रमणीय मैट्रिक्स का सामान्य रैखिक समूह है।
ऑटोमोर्फिज्म समूह GL(V) = GLn(Fp) V \ {0} पर सकर्मक रूप से कार्य करता है (जैसा कि किसी भी सदिश समष्टि के लिए सत्य है)। यह वास्तव में सभी परिमित समूहों के बीच प्राथमिक एबेलियन समूहों की विशेषता है: यदि G पहचान e के साथ एक परिमित समूह है, जैसे कि Aut(G) G \ {e} पर सकर्मक रूप से कार्य करता है, तो G प्राथमिक एबेलियन है। (प्रमाण: यदि Aut(G) G \ {e} पर सकर्मक रूप से कार्य करता है, तो G के सभी गैर-पहचान तत्वों का क्रम समान (आवश्यक रूप से अभाज्य) होता है। तब G एक p-समूह है। इससे पता चलता है कि G के पास एक गैर-तुच्छ केंद्र है, जो आवश्यक रूप से सभी ऑटोमोर्फिज्म के तहत अपरिवर्तनीय है, और इस प्रकार सभी G के बराबर है।)
ऑटोमोर्फिज्म समूह
एक सदिश समष्टि के रूप में V का एक आधार है {e1, ..., en} यह है जैसा कि उदाहरणों में वर्णित है, यदि हम {v1, ..., vn} v का कोई भी n तत्व होने के लिए, तो रैखिक बीजगणित द्वारा हमारे पास मैपिंग T(ei) = vi v के एक रैखिक परिवर्तन के लिए विशिष्ट रूप से विस्तारित होता है। ऐसे प्रत्येक T को V से V (एक [[स्वचालितता]]) तक समूह होमोमोर्फिज्म के रूप में माना जा सकता है और इसी तरह V के किसी भी एंडोमोर्फिज्म को वेक्टर स्पेस के रूप में वी के रैखिक परिवर्तन के रूप में माना जा सकता है।
यदि हम अपना ध्यान V के स्वप्रतिरूपणों तक ही सीमित रखें तो हमारे पास Aut(V) = { T : V → V | ker T = 0 } = GLn(Fp), 'Fp' पर n×n व्युत्क्रमणीय आव्यूहों का सामान्य रैखिक समूह
ऑटोमोर्फिज्म समूह GL(V) = GLn(Fp) V \ {0} पर समूह क्रिया (गणित)#संक्रमणीय कार्य करता है (जैसा कि किसी भी सदिश समष्टि के लिए सत्य है)। यह वास्तव में सभी परिमित समूहों के बीच प्राथमिक एबेलियन समूहों की विशेषता है: यदि G पहचान e के साथ एक परिमित समूह है जैसे कि Aut(G) G \ {e} पर सकर्मक रूप से कार्य करता है, तो जी प्राथमिक एबेलियन है। (प्रमाण: यदि Aut(G) G \ {e} पर सकर्मक रूप से कार्य करता है, तो G के सभी गैर-पहचान तत्वों का क्रम समान (आवश्यक रूप से अभाज्य) होता है। तब G एक p-समूह है। इससे पता चलता है कि G के पास एक गैर-तुच्छ समूह केंद्र है, जो सभी ऑटोमोर्फिज्म के तहत आवश्यक रूप से अपरिवर्तनीय है, और इस प्रकार सभी जी के बराबर है।)
उच्चतर आदेशों के लिए एक सामान्यीकरण
प्राइम ऑर्डर घटकों से आगे प्राइम-पावर ऑर्डर तक जाना भी रुचिकर हो सकता है। किसी प्राथमिक एबेलियन समूह G को कुछ अभाज्य p के लिए (p,p,...,p) प्रकार का मानें। एक समचक्रीय समूह[5] (रैंक n का) प्रकार (m,m,...,m) का एक एबेलियन समूह है यानी क्रम m के n आइसोमोर्फिक चक्रीय समूहों का प्रत्यक्ष उत्पाद, जिनमें से प्रकार (p) के समूह हैं (pk,pk,...,pk) एक विशेष स्थितिया है।
संबंधित समूह
अतिरिक्त विशेष समूह क्रम p के चक्रीय समूह द्वारा प्राथमिक एबेलियन समूहों के विस्तार हैं, और हाइजेनबर्ग समूह के अनुरूप हैं।
यह भी देखें
संदर्भ
- ↑ Hans J. Zassenhaus (1999) [1958]. समूहों का सिद्धांत. Courier Corporation. p. 142. ISBN 978-0-486-16568-4.
- ↑ 2.0 2.1 H.E. Rose (2009). परिमित समूहों पर एक पाठ्यक्रम. Springer Science & Business Media. p. 88. ISBN 978-1-84882-889-6.
- ↑ Steven Givant; Paul Halmos (2009). बूलियन बीजगणित का परिचय. Springer Science & Business Media. p. 6. ISBN 978-0-387-40293-2.
- ↑ L. Fuchs (1970). अनंत एबेलियन समूह। वॉल्यूम I. Academic Press. p. 43. ISBN 978-0-08-087348-0.
- ↑ Gorenstein, Daniel (1968). "1.2". परिमित समूह. New York: Harper & Row. p. 8. ISBN 0-8218-4342-7.