बिलिनियर ट्रांसफॉर्म (जिसे अर्नोल्ड टस्टिन के बाद टस्टिन की विधि के रूप में भी जाना जाता है) का उपयोग डिजिटल सिग्नल प्रोसेसिंग और असतत-समय नियंत्रण सिद्धांत में निरंतर-समय प्रणाली प्रतिनिधित्व को अलग-अलग समय में बदलने और इसके विपरीत किया जाता है।
बिलिनियर ट्रांसफ़ॉर्म एक अनुरूप मैपिंग (अर्थात्, एक मोबियस ट्रांसफ़ॉर्मेशन) का एक विशेष मामला है, जिसका उपयोग अक्सर निरंतर-समय डोमेन (अक्सर एनालॉग फ़िल्टर कहा जाता है) में एक रैखिक, समय-अपरिवर्तनीय (एलटीआई) फ़िल्टर के स्थानांतरण फ़ंक्शन को असतत-समय डोमेन में एक रैखिक, शिफ्ट-इनवेरिएंट फ़िल्टर के स्थानांतरण फ़ंक्शन में परिवर्तित करने के लिए किया जाता है (जिसे अक्सर डिजिटल फ़िल्टर कहा जाता है, हालांकि स्विच किए गए कैपेसिटर के साथ निर्मित एनालॉग फ़िल्टर होते हैं) अलग-अलग समय फ़िल्टर हैं)। यह अक्ष, , s-प्लेन से यूनिट सर्कल, z-प्लेन में स्थिति को मैप करता है। अन्य द्विरेखीय परिवर्तनों का उपयोग किसी भी असतत-समय रैखिक प्रणाली की आवृत्ति प्रतिक्रिया को विकृत करने के लिए किया जा सकता है (उदाहरण के लिए मानव श्रवण प्रणाली के गैर-रेखीय आवृत्ति रिज़ॉल्यूशन को अनुमानित करने के लिए) और सिस्टम की इकाई देरी को प्रथम-क्रम ऑल-पास फ़िल्टर के साथ प्रतिस्थापित करके अलग डोमेन में लागू किया जा सकता है।
परिवर्तन स्थिरता को बरकरार रखता है और निरंतर-समय फ़िल्टर, की आवृत्ति प्रतिक्रिया के प्रत्येक बिंदु को असतत-समय फ़िल्टर, की आवृत्ति प्रतिक्रिया में संबंधित बिंदु पर मैप करता है, हालांकि कुछ हद तक अलग आवृत्ति पर, जैसा कि नीचे दिए गए फ़्रीक्वेंसी वॉरपिंग अनुभाग में दिखाया गया है। इसका मतलब यह है कि एनालॉग फ़िल्टर की आवृत्ति प्रतिक्रिया में जो प्रत्येक सुविधा दिखाई देती है, उसके लिए डिजिटल फ़िल्टर की आवृत्ति प्रतिक्रिया में समान लाभ और चरण बदलाव के साथ एक संबंधित सुविधा लेकिन, शायद, कुछ अलग आवृत्ति पर होती है। यह कम आवृत्तियों पर मुश्किल से ध्यान देने योग्य है लेकिन नाइक्विस्ट आवृत्ति के करीब आवृत्तियों पर काफी स्पष्ट है।
असतत-समय सन्निकटन
बिलिनियर ट्रांसफ़ॉर्म प्राकृतिक लघुगणक फ़ंक्शन का प्रथम-क्रम पैड सन्निकटन है जो z-प्लेन से s-प्लेन की सटीक मैपिंग है। जब लाप्लास परिवर्तन एक असतत-समय संकेत पर किया जाता है (असतत-समय अनुक्रम के प्रत्येक तत्व को एक संगत विलंबित डिराक डेल्टा फ़ंक्शन से जोड़ा जाता है), तो परिणाम वास्तव में प्रतिस्थापन के साथ असतत-समय अनुक्रम का Z परिवर्तन होता है
कहाँ द्विरेखीय परिवर्तन व्युत्पत्ति में प्रयुक्त समलम्बाकार नियम का संख्यात्मक एकीकरण चरण आकार है;[1] या, दूसरे शब्दों में, नमूनाकरण अवधि। उपरोक्त द्विरेखीय सन्निकटन को हल किया जा सकता है या के लिए एक समान सन्निकटन को प्रदर्शित किया जा सकता है।
इस मैपिंग (और इसकी प्रथम-क्रम द्विरेखीय लघुगणक#पावर श्रृंखला) का व्युत्क्रम है
द्विरेखीय परिवर्तन अनिवार्य रूप से इस प्रथम क्रम सन्निकटन का उपयोग करता है और इसे निरंतर-समय स्थानांतरण फ़ंक्शन में प्रतिस्थापित करता है,
वह है
स्थिरता और न्यूनतम-चरण संपत्ति संरक्षित
एक निरंतर-समय कारण फ़िल्टर BIBO स्थिरता है यदि इसके स्थानांतरण फ़ंक्शन का ध्रुव (जटिल विश्लेषण) जटिल संख्या एस-प्लेन के बाएं आधे हिस्से में आता है। एक असतत-समय कारण फ़िल्टर स्थिर होता है यदि इसके स्थानांतरण फ़ंक्शन के ध्रुव जटिल विमान | जटिल z-प्लेन में इकाई सर्कल के अंदर आते हैं। बिलिनियर ट्रांसफॉर्म जटिल एस-प्लेन के बाएं आधे हिस्से को जेड-प्लेन में यूनिट सर्कल के आंतरिक भाग में मैप करता है। इस प्रकार, निरंतर-समय डोमेन में डिज़ाइन किए गए फ़िल्टर जो स्थिर होते हैं, उन्हें असतत-समय डोमेन में फ़िल्टर में परिवर्तित कर दिया जाता है जो उस स्थिरता को संरक्षित करते हैं।
इसी तरह, एक निरंतर-समय फ़िल्टर न्यूनतम-चरण है यदि इसके स्थानांतरण फ़ंक्शन का शून्य (जटिल विश्लेषण) जटिल एस-प्लेन के बाएं आधे हिस्से में आता है। एक असतत-समय फ़िल्टर न्यूनतम-चरण है यदि इसके स्थानांतरण फ़ंक्शन के शून्य जटिल z-प्लेन में यूनिट सर्कल के अंदर आते हैं। फिर वही मैपिंग प्रॉपर्टी यह आश्वासन देती है कि निरंतर-समय फ़िल्टर जो न्यूनतम-चरण हैं, उन्हें अलग-अलग-समय फ़िल्टर में परिवर्तित कर दिया जाता है जो न्यूनतम-चरण होने की संपत्ति को संरक्षित करते हैं।
एक सामान्य एलटीआई प्रणाली में स्थानांतरण कार्य होता है
स्थानांतरण फ़ंक्शन का क्रम
N का बड़ा है
P और
Q (व्यवहार में इसकी संभावना सबसे अधिक है
Pचूंकि सिस्टम के स्थिर होने के
उचित स्थानांतरण कार्य उचित ट्रांसफर फ़ंक्शन होना चाहिए)। द्विरेखीय परिवर्तन लागू करना
कहाँ
K को या तो परिभाषित किया गया है
2/T या अन्यथा यदि
आवृत्ति ताना-बाना का उपयोग किया जाता है, तो देता है
अंश और हर को सबसे बड़ी घात से गुणा करना
(z + 1)−1 वर्तमान,
(z + 1)-N, देता है
यहाँ देखा जा सकता है कि परिवर्तन के बाद अंश और हर दोनों की घात होती है
N.
फिर सतत-समय स्थानांतरण फ़ंक्शन के ध्रुव-शून्य रूप पर विचार करें
अंश और हर बहुपद की जड़ें,
ξi और
pi, सिस्टम के
शून्य और ध्रुव हैं। बिलिनियर ट्रांसफ़ॉर्म
एक-से-एक मैपिंग है, इसलिए इनका उपयोग करके इसे z-डोमेन में बदला जा सकता है
कुछ पृथक स्थानांतरण फ़ंक्शन शून्य और ध्रुव उत्पन्न करते हैं
ξ'i और
p'i
जैसा कि ऊपर वर्णित है, अंश और हर की घात अब दोनों हैं
N, दूसरे शब्दों में अब शून्य और ध्रुवों की संख्या बराबर है। से गुणा
(z + 1)-N का अर्थ है अतिरिक्त शून्य या ध्रुव हैं
[2]
शून्य और ध्रुवों के पूर्ण सेट को देखते हुए, z-डोमेन स्थानांतरण फ़ंक्शन तब होता है
उदाहरण
उदाहरण के तौर पर एक साधारण कम उत्तीर्ण आरसी फिल्टर लें। इस निरंतर-समय फ़िल्टर में स्थानांतरण फ़ंक्शन होता है
यदि हम इस फ़िल्टर को एक डिजिटल फ़िल्टर के रूप में लागू करना चाहते हैं, तो हम इसे प्रतिस्थापित करके बिलिनियर ट्रांसफ़ॉर्म लागू कर सकते हैं उपरोक्त सूत्र; कुछ पुनः काम करने के बाद, हमें निम्नलिखित फ़िल्टर प्रतिनिधित्व मिलता है:
|
|
|
|
|
|
|
|
हर के गुणांक 'फ़ीड-बैकवर्ड' गुणांक हैं और अंश के गुणांक 'फ़ीड-फ़ॉरवर्ड' गुणांक हैं जिनका उपयोग वास्तविक समय डिजिटल फ़िल्टर को लागू करने के लिए किया जाता है।
सामान्य प्रथम-क्रम निरंतर-समय फ़िल्टर के लिए परिवर्तन
निरंतर-समय, एनालॉग फ़िल्टर के गुणांकों को बिलिनियर ट्रांसफॉर्म प्रक्रिया के माध्यम से बनाए गए समान असतत-समय डिजिटल फ़िल्टर के साथ जोड़ना संभव है। दिए गए स्थानांतरण फ़ंक्शन के साथ एक सामान्य, प्रथम-क्रम निरंतर-समय फ़िल्टर को बदलना
बिलिनियर ट्रांसफॉर्म का उपयोग करने के लिए (किसी भी आवृत्ति विनिर्देश को पूर्व-वार किए बिना) प्रतिस्थापन की आवश्यकता होती है
कहाँ
- .
हालाँकि, यदि नीचे वर्णित आवृत्ति वार्पिंग मुआवजे का उपयोग बिलिनियर ट्रांसफॉर्म में किया जाता है, ताकि एनालॉग और डिजिटल फ़िल्टर लाभ और चरण दोनों आवृत्ति पर सहमत हों , तब
- .
इसके परिणामस्वरूप मूल निरंतर समय फ़िल्टर के गुणांक के संदर्भ में व्यक्त गुणांक के साथ एक अलग-समय डिजिटल फ़िल्टर होता है:
आम तौर पर संबंधित अंतर समीकरण प्राप्त करने से पहले हर में स्थिर पद को 1 पर सामान्यीकृत किया जाना चाहिए। इस में यह परिणाम
अंतर समीकरण (डिजिटल फिल्टर#डायरेक्ट फॉर्म I का उपयोग करके) है
सामान्य दूसरे क्रम का बाइक्वाड परिवर्तन
इसी तरह की प्रक्रिया का उपयोग दिए गए ट्रांसफर फ़ंक्शन के साथ सामान्य दूसरे-क्रम फ़िल्टर के लिए किया जा सकता है
इसके परिणामस्वरूप मूल निरंतर समय फ़िल्टर के गुणांक के संदर्भ में व्यक्त गुणांक के साथ एक अलग-समय डिजिटल बाइक्वाड फ़िल्टर होता है:
फिर, संगत अंतर समीकरण प्राप्त करने से पहले हर में स्थिर पद को आम तौर पर 1 पर सामान्यीकृत किया जाता है। इस में यह परिणाम
अंतर समीकरण (डिजिटल फिल्टर#डायरेक्ट फॉर्म I का उपयोग करके) है
फ़्रिक्वेंसी वार्पिंग
निरंतर-समय फ़िल्टर की आवृत्ति प्रतिक्रिया निर्धारित करने के लिए, स्थानांतरण फ़ंक्शन पर मूल्यांकन किया जाता है जो पर है एक्सिस। इसी तरह, असतत-समय फ़िल्टर की आवृत्ति प्रतिक्रिया निर्धारित करने के लिए, स्थानांतरण फ़ंक्शन पर मूल्यांकन किया जाता है जो यूनिट सर्कल पर है, . द्विरेखीय परिवर्तन मानचित्र बनाता है एस-प्लेन की धुरी (जिसका डोमेन है ) z-प्लेन के यूनिट सर्कल तक, (जो का डोमेन है ), लेकिन यह वही मैपिंग नहीं है जो मैप भी करता है इकाई वृत्त की धुरी। जब की वास्तविक आवृत्ति बिलिनियर ट्रांसफॉर्म के उपयोग द्वारा डिज़ाइन किए गए असतत-समय फ़िल्टर में इनपुट है, तो यह जानना वांछित है कि किस आवृत्ति पर, , निरंतर-समय फ़िल्टर के लिए यह को मैप किया गया है.
|
|
|
|
|
|
|
|
|
|
|
|
इससे पता चलता है कि असतत-समय फ़िल्टर z-प्लेन में यूनिट सर्कल पर प्रत्येक बिंदु, पर एक बिंदु पर मैप किया गया है निरंतर-समय फ़िल्टर एस-प्लेन पर अक्ष, . अर्थात्, द्विरेखीय परिवर्तन का असतत-समय से निरंतर-समय आवृत्ति मानचित्रण है
और उलटा मानचित्रण है
असतत-समय फ़िल्टर आवृत्ति पर व्यवहार करता है उसी तरह जैसे निरंतर-समय फ़िल्टर आवृत्ति पर व्यवहार करता है . विशेष रूप से, लाभ और चरण बदलाव जो असतत-समय फ़िल्टर की आवृत्ति पर होता है वही लाभ और चरण बदलाव है जो निरंतर-समय फ़िल्टर की आवृत्ति पर होता है . इसका मतलब यह है कि निरंतर-समय फ़िल्टर की आवृत्ति प्रतिक्रिया में दिखाई देने वाली प्रत्येक सुविधा, प्रत्येक टक्कर असतत-समय फ़िल्टर में भी दिखाई देती है, लेकिन एक अलग आवृत्ति पर। कम आवृत्तियों के लिए (अर्थात्, जब या ), फिर सुविधाओं को थोड़ी अलग आवृत्ति पर मैप किया जाता है; .
कोई यह देख सकता है कि संपूर्ण सतत आवृत्ति रेंज
मौलिक आवृत्ति अंतराल पर मैप किया गया है
सतत-समय फ़िल्टर आवृत्ति असतत-समय फ़िल्टर आवृत्ति से मेल खाती है और निरंतर-समय फ़िल्टर आवृत्ति असतत-समय फ़िल्टर आवृत्ति के अनुरूप
कोई यह भी देख सकता है कि इनके बीच एक अरैखिक संबंध है और द्विरेखीय परिवर्तन के इस प्रभाव को फ़्रीक्वेंसी वार्पिंग कहा जाता है। निरंतर-समय फ़िल्टर को सेटिंग द्वारा इस फ़्रीक्वेंसी वार्पिंग की भरपाई के लिए डिज़ाइन किया जा सकता है प्रत्येक आवृत्ति विनिर्देश के लिए जिस पर डिज़ाइनर का नियंत्रण होता है (जैसे कि कोने की आवृत्ति या केंद्र आवृत्ति)। इसे फ़िल्टर डिज़ाइन को प्री-वॉर्पिंग कहा जाता है।
हालाँकि, आवृत्ति विनिर्देश को पूर्व-वार करके आवृत्ति वार्पिंग की भरपाई करना संभव है (आमतौर पर एक गुंजयमान आवृत्ति या निरंतर समय प्रणाली की आवृत्ति प्रतिक्रिया की सबसे महत्वपूर्ण विशेषता की आवृत्ति)। वांछित असतत-समय प्रणाली प्राप्त करने के लिए इन पूर्व-विकृत विशिष्टताओं का उपयोग द्विरेखीय परिवर्तन में किया जा सकता है। एक डिजिटल फ़िल्टर को निरंतर समय फ़िल्टर के सन्निकटन के रूप में डिज़ाइन करते समय, डिजिटल फ़िल्टर की आवृत्ति प्रतिक्रिया (आयाम और चरण दोनों) को एक निर्दिष्ट आवृत्ति पर निरंतर फ़िल्टर की आवृत्ति प्रतिक्रिया से मेल खाने के लिए बनाया जा सकता है। , साथ ही डीसी पर मिलान, यदि निम्नलिखित परिवर्तन को निरंतर फ़िल्टर स्थानांतरण फ़ंक्शन में प्रतिस्थापित किया जाता है।[3] यह ऊपर दिखाए गए टस्टिन के परिवर्तन का एक संशोधित संस्करण है।
हालाँकि, ध्यान दें कि यह परिवर्तन मूल परिवर्तन बन जाता है
जैसा .
वारपिंग घटना का मुख्य लाभ आवृत्ति प्रतिक्रिया विशेषता के अलियासिंग विरूपण की अनुपस्थिति है, जैसे कि आवेग अपरिवर्तनशीलता के साथ देखा गया।
यह भी देखें
संदर्भ
बाहरी संबंध