क्षेत्र या तो वास्तविक संख्या या समिष्ट संख्या है, आव्यूहों का K- सदिश समष्टि है, जिसमें पंक्तियाँ एवं फ़ील्ड में कॉलम एवं प्रविष्टियाँ हैं। आव्यूह मानदंड आदर्श है।
यह लेख सदैव दो प्रत्येकी ऊर्ध्वाधर पट्टी (जैसे: ) वाले ऐसे मानदंड लिखेगा, इस प्रकार, आव्यूह मानदंड फलन है जो निम्नलिखित गुणों को पूर्ण करता है:[1][2]सभी अदिश एवं आव्यूह के लिए,
(धनात्मक-मूल्यवान)
(निश्चित)
(बिल्कुल सजातीय)
(उप-योगात्मक या त्रिभुज असमानता को संतुष्ट करना)
आव्यूह को पुनर्व्यवस्थित सदिश से भिन्न करने वाली एकमात्र विशेषता आव्यूह गुणन है। आव्यूह मानदंड विशेष रूप से उपयोगी होते हैं यदि वे 'उप-गुणक' भी हों:[1][2][3]
Kn×n पर प्रत्येक मानक को उप-गुणक होने के लिए पुन: स्केल किया जा सकता है; कुछ पुस्तकों में, शब्दावली आव्यूह मानदंड उप-गुणक मानदंडों के लिए आरक्षित है।[4]
मान लीजिए सदिश मानदंड पर एवं सदिश मानदंड पर दिया जाता है। कोई आव्यूह A से रैखिक ऑपरेटर को मानक आधार के संबंध में प्रेरित करता है, एवं अंतरिक्ष पर संबंधित प्रेरित मानदंड या ऑपरेटर मानदंड या अधीनस्थ मानदंड को परिभाषित करता है। के सभी आव्यूह इस प्रकार हैं:
जहाँ उच्चतम को प्रदर्शित करता है। यह मानदंड मापता है कि मैपिंग द्वारा कितनी प्रेरित है, जो सदिश को विस्तृत कर सकते हैं। सदिश मानदंडों , पर निर्भर करता है, इसके अतिरिक्त अन्य संकेतन ऑपरेटर मानदंड के लिए उपयोग किया जा सकता है।
सदिश p-मानदंडों से प्रेरित आव्यूह मानदंड
यदि सदिश के लिए p-मानदंड () का उपयोग दोनों समिष्टों एवं के लिए किया जाता है, तो संबंधित ऑपरेटर मानदंड है:[2]
ये प्रेरित मानदंड एंट्रीवाइज आव्यूह मानदंडों नीचे दिए गए आव्यूह के लिए स्कैटन पी-मानदंड से भिन्न हैं जिन्हें सामान्यतः द्वारा भी दर्शाया जाता है। विशेष विषयों में , प्रेरित आव्यूह मानदंडों की गणना का अनुमान लगाया जा सकता है,
जो कि आव्यूह का अधिकतम निरपेक्ष स्तंभ योग है;
जो कि आव्यूह की अधिकतम पूर्ण पंक्ति राशि है।
उदाहरण के लिए,
हमारे पास है,
विशेष विषय में (यूक्लिडियन मानदंड या -सदिश के लिए मानदंड), प्रेरित आव्यूह मानदंड वर्णक्रमीय मानदंड है। (दोनों मान अनंत आयामों में समान नहीं होते - आगे की चर्चा के लिए वर्णक्रमीय त्रिज्या देखें।) आव्यूह का वर्णक्रमीय मानदंड का सबसे बड़ा एकल मान है, (अर्थात्, आव्यूह के सबसे बड़े eigenvalue का वर्गमूल , जहाँ , के संयुग्म समिष्टान्तरण को प्रदर्शित करता है):[5]
जहाँ आव्यूह के सबसे बड़े एकल मान का प्रतिनिधित्व करता है।
एवं इसी प्रकार एकवचन मूल्य अपघटन (एसवीडी) द्वारा होता है। अन्य महत्वपूर्ण असमानता है:
जहाँ फ्रोबेनियस मानदंड है। समानता होती है, यदि एवं केवल यदि आव्यूह रैंक-वन आव्यूह या शून्य आव्यूह है। यह असमानता इस तथ्य से प्राप्त की जा सकती है कि आव्यूह का ट्रेस उसके आइगेनवैल्यू के योग के समान है।
जब हमारे पास की समतुल्य परिभाषा जैसा है। इसे कॉची-श्वार्ज़ असमानता का उपयोग करके उपरोक्त परिभाषाओं के समकक्ष प्रदर्शित किया जा सकता है।
सदिश α- एवं β- मानदंड द्वारा प्रेरित आव्यूह मानदंड
मान लीजिए सदिश मानदंड एवं रिक्त समिष्ट एवं क्रमशः के लिए उपयोग किया जाता है, संबंधित ऑपरेटर मानदंड है:
विशेष विषयों में एवं , प्रेरित आव्यूह मानदंडों की गणना की जा सकती है,
जहाँ आव्यूह की i पंक्ति है। विशेष विषयों में एवं , प्रेरित आव्यूह मानदंडों की गणना की जा सकती है,
जहाँ आव्यूह का j-वां कॉलम है।
इस प्रकार, एवं क्रमशः आव्यूह की अधिकतम पंक्ति एवं स्तंभ 2-मानदंड हैं।
गुण
कोई भी ऑपरेटर मानदंड सदिश मानदंडों के अनुरूप होता है जो इसे प्रेरित करते हैं एवं प्रदान करता हैं,
; ; एवं सदिश मानदंडों के संबंधित जोड़े एवं द्वारा प्रेरित ऑपरेटर मानदंड हैं, तब,
यह इस प्रकार है,
एवं
वर्ग आव्यूह वर्ग आव्यूहों के समिष्ट पर सदिश मानदंडों एवं से प्रेरित संचालिका मानदंड है। फिर, ऑपरेटर मानदंड उप-गुणक आव्यूह मानदंड है:
इसके अतिरिक्त, ऐसा कोई भी मानदंड असमानता को संतुष्ट करता है,
(1)
सभी धनात्मक पूर्णांकों के लिए r, जहाँ ρ(A), A का वर्णक्रमीय त्रिज्या है। सममित या प्रत्येक्मिटियन आव्यूहA के लिए, हमारे पास 2-मानदंड के लिए, समानता (1) है, क्योंकि इस विषय में 2-मानदंड A का वर्णक्रमीय त्रिज्या है। आव्यूह के लिए, हमारे पास किसी भी मानदंड के लिए समानता नहीं हो सकती है; उदाहरण
जिसकी वर्णक्रमीय त्रिज्या लुप्त हो रही है। किसी भी स्थिति में, किसी भी मैट्रिक्स मानदंड के लिए, हमारे पास वर्णक्रमीय त्रिज्या सूत्र है:
सुसंगत एवं सुसंगत मानदंड
आव्यूह मानदंड पर सदिश मानदंड के अनुरूप कहा जाता है, पर एवं सदिश मानदंड पर , यदि:
सभी एवं सभी के लिए है, विशेष विषय में m = n एवं , के साथ को संगत भी कहा जाता है।
सभी प्रेरित मानदंड परिभाषा के अनुरूप हैं। इसके अतिरिक्त, किसी भी उप-गुणक आव्यूह मानदंड पर संगत सदिश मानदंड को परिभाषित करके प्रेरित करता है।
एंट्रीवाइज आव्यूह मानदंड
ये मानदंड का इलाज करते हैं आकार के सदिश के रूप में आव्यूह का इलाज करते हैं, एवं परिचित सदिश मानदंडों में से एक का उपयोग करते है। उदाहरण के लिए, सदिश के लिए p-मानदंड का उपयोग करते हुए, p ≥ 1, हम पाते हैं:
यह प्रेरित p-मानदंड (ऊपर देखें) एवं स्कैटन p-मानदंड (नीचे देखें) से भिन्न मानदंड है, किन्तु अंकन समान है।
विशेष विषय p = 2 फ्रोबेनियस मानदंड है, एवं p = ∞ अधिकतम मानदंड उत्पन्न करता है।
L2,1 एवं Lp,qमानदंड
आव्यूह के कॉलम बनते है, मूल परिभाषा से, आव्यूह m-आयामी अंतरिक्ष में n डेटा बिंदु प्रस्तुत करता है। मानक[6] आव्यूह के स्तंभों के यूक्लिडियन मानदंडों का योग है:
त्रुटि फलन के रूप में मानदंड अधिक शक्तिशाली है, क्योंकि प्रत्येक डेटा बिंदु (कॉलम) के लिए त्रुटि का वर्ग नहीं किया गया है। इसका उपयोग शक्तिशाली डेटा विश्लेषण एवं विरल कोडिंग में किया जाता है।
p, q ≥ 1 के लिए, मानदंड को मानदंड में इस प्रकार सामान्यीकृत किया जा सकता है:
जब p = q = 2 के लिए मानदंड होता है, तो इसे फ्रोबेनियस मानदंड या हिल्बर्ट-श्मिट मानदंड कहा जाता है, चूँकि पश्चात वाला शब्द (संभवतः अनंत-आयामी) हिल्बर्ट समिष्ट पर ऑपरेटरों के संदर्भ में अधिक बार उपयोग किया जाता है। इस मानदंड को विभिन्न विधियों से परिभाषित किया जा सकता है:
जहाँ , के विलक्षण मूल्य हैं याद रखें कि ट्रेस (आव्यूह) वर्ग आव्यूह की विकर्ण प्रविष्टियों का योग वापस करता है।
फ्रोबेनियस मानदंड यूक्लिडियन मानदंड का विस्तार है, एवं सभी आव्यूहों के समिष्ट पर फ्रोबेनियस आंतरिक उत्पाद से आता है।
फ्रोबेनियस मानदंड उप-गुणक है एवं संख्यात्मक रैखिक बीजगणित के लिए बहुत उपयोगी है। कॉची-श्वार्ज़ असमानता का उपयोग करके फ्रोबेनियस मानदंड की उप-गुणात्मकता को सिद्ध किया जा सकता है।
प्रेरित मानदंडों की अपेक्षा में फ्रोबेनियस मानदंड की गणना करना प्रायः सरल होता है, एवं इसमें रोटेशन आव्यूह (एवं सामान्य रूप से एकात्मक ऑपरेटर संचालन) के अंतर्गत अपरिवर्तनीय होने की उपयोगी संपत्ति होती है। वह किसी भी एकात्मक आव्यूह के लिए है। यह गुण ट्रेस की चक्रीय प्रकृति से अनुसरण करता है ():
एवं अनुरूप रूप से:
जहां हमने के एकात्मक प्रकृति का उपयोग किया है (वह है, है,\),
इससे संतुष्टि भी मिलती है,
एवं
जहाँ फ्रोबेनियस आंतरिक उत्पाद है, एवं Re समिष्ट संख्या का वास्तविक भाग (वास्तविक आव्यूह के लिए अप्रासंगिक) है।
अधिकतम मानदंड
अधिकतम मानदंड, सीमा में तत्ववार मानदंड है, p = q अनंत तक जाता है:
यह मानदंड उप-गुणक नहीं है।
ध्यान दें कि कुछ साहित्य में (जैसे संचार समिष्टता), अधिकतम-मानदंड की वैकल्पिक परिभाषा, जिसे -मानदंड भी कहा जाता है, गुणनखंडन मानदंड को संदर्भित करता है:
आव्यूह के एकवचन मान अपघटन के सदिश पर p-मानदंड प्रस्तावित करते समय स्कैटन p-मानदंड उत्पन्न होते हैं।[2]यदि आव्यूह के एकवचन मान , σi द्वारा निरूपित किया जाता है, तो स्कैटन p-मानदंड द्वारा परिभाषित किया गया है,
ये मानदंड फिर से प्रेरित एवं एंट्रीवाइज p-मानदंडों के साथ संकेतन भागित करते हैं, किन्तु वे भिन्न हैं।
सभी स्कैटन मानदंड उप-गुणक हैं। वे इकाई रूप से अपरिवर्तनीय भी हैं, जिसका अर्थ है कि सभी आव्यूह के लिए एवं सभी एकात्मक आव्यूह एवं है।
सबसे परिचित विषय p = 1, 2, ∞ हैं। विषय p = 2 फ्रोबेनियस मानदंड उत्पन्न करता है, जो पूर्व प्रस्तुत किया गया था। विषय p = ∞ वर्णक्रमीय मानदंड उत्पन्न करता है, जो सदिश 2-मानदंड द्वारा प्रेरित ऑपरेटर मानदंड है। अंत में, p = 1 'परमाणु मानदंड' उत्पन्न करता है (जिसे ट्रेस मानदंड, या क्यू फैन 'n'-मानदंड के रूप में भी जाना जाता है)[7]), जो इस रूप में परिभाषित है:
जहाँ धनात्मक अर्धनिश्चित आव्यूह को प्रदर्शित करता है, ऐसा है कि है। अधिक त्रुटिहीन रूप से, धनात्मक अर्धनिश्चित आव्यूह है, इसके आव्यूह का वर्गमूल उचित रूप से परिभाषित है। परमाणु मानदंड रैंक फलन का उत्तल लिफाफा है, इसलिए इसका उपयोग प्रायः निम्न-रैंक आव्यूह की शोध के लिए गणितीय अनुकूलन में किया जाता है।
वॉन न्यूमैन की ट्रेस असमानता का संयोजन यूक्लिडियन समिष्ट के लिए होल्डर की असमानता के साथ होल्डर की असमानता का संस्करण उत्पन्न करता है।स्कैटन मानदंडों के लिए :
विशेष रूप से, इसका तात्पर्य स्कैटन मानक असमानता
है।
मोनोटोन मानदंड
आव्यूह मानदंड इसे मोनोटोन कहा जाता है यदि यह लोवेनर आदेश के संबंध में मोनोटोनिक है। इस प्रकार, आव्यूह मानदंड बढ़ रहा है यदि
है।
फ्रोबेनियस मानदंड एवं वर्णक्रमीय मानदंड मोनोटोन मानदंडों के उदाहरण हैं।[8]
मानदंडों में कमी
आव्यूह मानदंडों के लिए प्रेरणा का अन्य स्रोत आव्यूह को भारित ग्राफ, निर्देशित ग्राफ के आसन्न आव्यूह के रूप में मानने से उत्पन्न होता है।[9] तथाकथित कट मानदंड मापता है कि संबंधित ग्राफ द्विदलीय ग्राफ के कितना समीप है:
जहाँ A ∈ Km×n[9][10][11], समतुल्य परिभाषाएँ (स्थिर कारक तक) 2|S| > n & 2|T| > m; S = T; या S ∩ T = ∅ प्रतिबंध लगाती हैं [10]
कट-मानदंड प्रेरित ऑपरेटर मानदंड ‖·‖∞→1 के समान है, जो स्वयं अन्य मानदंड के समतुल्य है, जिसे ग्रोथेंडिक असमानता मानदंड कहा जाता है।[11]
ग्रोथेंडिक मानदंड को परिभाषित करने के लिए, पूर्व ध्यान दें कि रैखिक ऑपरेटर K1 → K1 केवल अदिश राशि है, एवं इस प्रकार किसी भी पर रैखिक संचालिका Kk → Kkतक विस्तारित होती है। इसके अतिरिक्त, आधार Kn एवं Km, का कोई भी विकल्प दिया गया है, प्रत्येक आव्यूह तत्व को तत्वों पर रखकर Kk अदिश गुणन के माध्यम सेकोई भी रैखिक ऑपरेटर Kn → Km, रैखिक ऑपरेटर (Kk)n → (Kk)mतक विस्तारित है। ग्रोथेंडिक मानदंड उस विस्तारित ऑपरेटर का मानक है; प्रतीकों में:[11]
ग्रोथेंडिक मानदंड आधार की पसंद (सामान्यतः इसे मानक आधार माना जाता है) एवं k पर निर्भर करता है।
किन्हीं दो आव्यूह मानदंडों के लिए एवं , हमारे पास है:
कुछ धनात्मक संख्याओं r एवं s के लिए, सभी आव्यूहों के लिए , दूसरे शब्दों में, सभी मानदंड पर समतुल्य हैं; वे उसी टोपोलॉजी (संरचना)को प्रेरित करते हैं। यह सत्य है क्योंकि सदिश समष्टि इसका सीमित आयाम है।
इसके अतिरिक्त, प्रत्येक सदिश मानदंड के लिए पर , अद्वितीय धनात्मक वास्तविक संख्या सम्मिलित है, ऐसा कि प्रत्येक के लिए उप-गुणक आव्यूह मानदंड है।
उप-गुणक आव्यूह मानदंड न्यूनतम कहा जाता है, यदि कोई अन्य उप-गुणक आव्यूह मानदंड संतुष्टि करने वाला सम्मिलित नहीं है।
मानदंड तुल्यता के उदाहरण
, सदिश p-नॉर्म द्वारा प्रेरित मानदंड को देखते हैं(जैसा कि ऊपर प्रेरित नॉर्म अनुभाग में है)।
आव्यूह के लिए रैंक का (रैखिक बीजगणित) , निम्नलिखित असमानताएँ कायम हैं:[12][13]
↑Malek-Shahmirzadi, Massoud (1983). "मैट्रिक्स मानदंडों के कुछ वर्गों का लक्षण वर्णन". Linear and Multilinear Algebra (in English). 13 (2): 97–99. doi:10.1080/03081088308817508. ISSN0308-1087.
↑Horn, Roger A. (2012). मैट्रिक्स विश्लेषण. Johnson, Charles R. (2nd ed.). Cambridge: Cambridge University Press. pp. 340–341. ISBN978-1-139-77600-4. OCLC817236655.
↑Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, §5.2, p.281, Society for Industrial & Applied Mathematics, June 2000.
↑Ding, Chris; Zhou, Ding; He, Xiaofeng; Zha, Hongyuan (June 2006). "R1-PCA: Rotational Invariant L1-norm Principal Component Analysis for Robust Subspace Factorization". Proceedings of the 23rd International Conference on Machine Learning. ICML '06. Pittsburgh, Pennsylvania, USA: ACM. pp. 281–288. doi:10.1145/1143844.1143880. ISBN1-59593-383-2.
↑ 10.010.1Lovász László (2012). "The cut distance". बड़े नेटवर्क और ग्राफ़ सीमाएँ. AMS Colloquium Publications. Vol. 60. Providence, RI: American Mathematical Society. pp. 127–131. ISBN978-0-8218-9085-1. Note that Lovász rescales ‖A‖□ to lie in [0, 1].