मूल परीक्षण

From Vigyanwiki
Revision as of 12:14, 25 July 2023 by alpha>Saurabh

गणित में, मूल परीक्षण अनंत श्रृंखला की अभिसरण श्रृंखला (एक अभिसरण परीक्षण) के लिए मानदंड है। यह मात्रा पर निर्भर करता है

कहाँ श्रृंखला की शर्तें हैं, और बताती हैं कि यदि यह मात्रा से कम है तो श्रृंखला पूरी तरह से परिवर्तित हो जाती है, लेकिन यदि यह से अधिक है तो यह अलग हो जाती है। यह विद्युत शृंखला के संबंध में विशेष रूप से उपयोगी है।

मूल परीक्षण स्पष्टीकरण

जड़ परीक्षण के लिए निर्णय आरेख

मूल परीक्षण सबसे पहले ऑगस्टिन-लुई कॉची द्वारा विकसित किया गया था जिन्होंने इसे अपनी पाठ्यपुस्तक कौर्स डी'एनालिसिस (1821) में प्रकाशित किया था।[1] इस प्रकार, इसे कभी-कभी कॉची रूट परीक्षण या कॉची रेडिकल परीक्षण के रूप में जाना जाता है। श्रृंखला के लिए

रूट परीक्षण संख्या का उपयोग करता है

जहां लिम सुपर, संभवतः +∞ से बेहतर सीमा को दर्शाता है। ध्यान दें कि यदि

अभिसरण होता है तो यह C के बराबर होता है और इसके बजाय रूट परीक्षण में इसका उपयोग किया जा सकता है।

मूल परीक्षण बताता है कि:

  • यदि C <1 है तो श्रृंखला पूर्ण रूप से अभिसरित होती है,
  • यदि C > 1 है तो श्रृंखला अपसारी श्रृंखला,
  • यदि C = 1 है और सीमा ऊपर से सख्ती से पहुंचती है तो श्रृंखला अलग हो जाती है,
  • अन्यथा परीक्षण अनिर्णीत है (श्रृंखला अलग हो सकती है, पूर्ण रूप से परिवर्तित हो सकती है या सशर्त रूप से परिवर्तित हो सकती है)।

कुछ श्रृंखलाएं हैं जिनके लिए C = 1 है और श्रृंखला अभिसरण करती है, उदाहरण के लिए , और कुछ अन्य भी हैं जिनके लिए C = 1 है और श्रृंखला अलग हो जाती है, उदाहरण के लिए .

पावर श्रृंखला के लिए आवेदन

इस परीक्षण का उपयोग पावर श्रृंखला के साथ किया जा सकता है

जहां गुणांक सीn, और केंद्र p सम्मिश्र संख्याएँ हैं और तर्क z सम्मिश्र चर है।

फिर इस शृंखला की शर्तें a द्वारा दी जाएंगीn = सीn(जेड - पी)n. इसके बाद कोई रूट परीक्षण को ए पर लागू करता हैn ऊपरोक्त अनुसार। ध्यान दें कि कभी-कभी इस तरह की श्रृंखला को p के चारों ओर शक्ति श्रृंखला कहा जाता है, क्योंकि अभिसरण की त्रिज्या सबसे बड़े अंतराल या p पर केंद्रित डिस्क की त्रिज्या R होती है, जिससे कि श्रृंखला आंतरिक रूप से सभी बिंदुओं z के लिए अभिसरण हो जाएगी (अभिसरण पर) अंतराल या डिस्क की सीमा को आम तौर पर अलग से जांचना पड़ता है)। ऐसी शक्ति श्रृंखला पर लागू मूल परीक्षण का परिणाम कॉची-हैडामर्ड प्रमेय है: अभिसरण की त्रिज्या बिल्कुल है इस बात का ध्यान रखें कि यदि हर 0 है तो हमारा वास्तव में मतलब ∞ है।

प्रमाण

एक श्रृंखला Σa के अभिसरण का प्रमाणn प्रत्यक्ष तुलना परीक्षण का अनुप्रयोग है। यदि सभी n ≥ N (N कुछ निश्चित प्राकृतिक संख्या) के लिए हमारे पास है , तब . ज्यामितीय श्रृंखला के बाद से अभिसरण करता है इसलिए करता है तुलना परीक्षण द्वारा. इसलिए Σan बिल्कुल एकाग्र हो जाता है।

अगर अपरिमित रूप से अनेक n के लिए, फिर an 0 पर अभिसरण करने में विफल रहता है, इसलिए श्रृंखला अपसारी है।

परिणाम का प्रमाण: एक शक्ति श्रृंखला के लिए Σan = Σcn(जेड - पी)n, हम उपरोक्त से देखते हैं कि यदि कोई N मौजूद है तो श्रृंखला अभिसरण करती है जैसे कि सभी n ≥ N के लिए हमारे पास है

के बराबर

सभी n ≥ N के लिए, जिसका अर्थ है कि श्रृंखला को अभिसरण करने के लिए हमारे पास होना चाहिए सभी पर्याप्त रूप से बड़े n के लिए। ये कहने के बराबर है

इसलिए अब एकमात्र अन्य स्थान जहां अभिसरण संभव है वह है कब

(चूंकि बिंदु> 1 अलग हो जाएंगे) और इससे अभिसरण की त्रिज्या नहीं बदलेगी क्योंकि ये केवल अंतराल या डिस्क की सीमा पर स्थित बिंदु हैं, इसलिए

उदाहरण

उदाहरण 1:

मूल परीक्षण लागू करना और उस तथ्य का उपयोग करना

तब से श्रृंखला अलग हो जाती है।[2]

उदाहरण 2:

मूल परीक्षण अभिसरण दर्शाता है क्योंकि

यह उदाहरण दिखाता है कि मूल परीक्षण अनुपात परीक्षण से कैसे अधिक मजबूत है। इस श्रृंखला के लिए अनुपात परीक्षण अनिर्णायक है यदि इसलिए अजीब है (हालांकि नहीं तो सम है), क्योंकि

रूट परीक्षण पदानुक्रम

रूट परीक्षण पदानुक्रम[3][4] अनुपात परीक्षण पदानुक्रम के समान ही बनाया गया है (अनुपात परीक्षण की धारा 4.1 और विशेष रूप से उपधारा 4.1.4 देखें)।

एक श्रृंखला के लिए सकारात्मक शर्तों के साथ हमारे पास अभिसरण/विचलन के लिए निम्नलिखित परीक्षण हैं।

होने देना पूर्णांक हो, और चलो निरूपित करें प्राकृतिक लघुगणक का वां पुनरावृत्ति, अर्थात और किसी के लिए भी ,

.

लगता है कि , कब बड़ा है, रूप में प्रस्तुत किया जा सकता है

(रिक्त योग 0 माना गया है।)

  • शृंखला अभिसरित होती है, यदि
  • श्रृंखला अलग हो जाती है, यदि
  • अन्यथा, परीक्षण अनिर्णायक है.

प्रमाण

तब से , तो हमारे पास हैं

इस से,

टेलर सीरीज से| टेलर के विस्तार को दाहिनी ओर लागू करने पर, हमें प्राप्त होता है:

इस तरह,

(खाली उत्पाद 1 पर सेट है।)

अंतिम परिणाम अभिसरण के लिए अभिन्न परीक्षण से आता है।

यह भी देखें

  • अनुपात परीक्षण
  • अभिसारी श्रृंखला

संदर्भ

  1. Bottazzini, Umberto (1986), The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass, Springer-Verlag, pp. 116–117, ISBN 978-0-387-96302-0. Translated from the Italian by Warren Van Egmond.
  2. Briggs, William; Cochrane, Lyle (2011). Calculus: Early Transcendentals. Addison Wesley. p. 571.
  3. Abramov, Vyacheslav M. (2022). "सकारात्मक श्रृंखला के अभिसरण के लिए आवश्यक एवं पर्याप्त स्थितियाँ" (PDF). Journal of Classical Analysis. 19 (2): 117--125. arXiv:2104.01702. doi:10.7153/jca-2022-19-09.
  4. Bourchtein, Ludmila; Bourchtein, Andrei; Nornberg, Gabrielle; Venzke, Cristiane (2012). "कॉची परीक्षण से संबंधित अभिसरण परीक्षणों का एक पदानुक्रम" (PDF). International Journal of Mathematical Analysis. 6 (37--40): 1847--1869.

This article incorporates material from Proof of Cauchy's root test on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.