समुच्चय-मान फलन
एक सेट-वैल्यू फ़ंक्शन (या पत्राचार) एक गणितीय फ़ंक्शन है जो तत्वों को एक सेट, फ़ंक्शन के डोमेन से सबसेट तक मैप करता है।
फ़ंक्शन |
---|
x ↦ f (x) |
डोमेन और कोडोमैन के उदाहरण |
कक्षाएं/गुण |
कंस्ट्रक्शन |
सामान्यीकरण |
एक और सेट. सेट-वैल्यू फ़ंक्शंस का उपयोग अनुकूलन, नियंत्रण सिद्धांत और गेम सिद्धांत सहित विभिन्न गणितीय क्षेत्रों में किया जाता है।
कुछ सन्दर्भों में सेट-वैल्यू फ़ंक्शंस को बहु-वैल्यू फ़ंक्शंस के रूप में भी जाना जाता है,[1] लेकिन यहां और गणितीय विश्लेषण में कई अन्य संदर्भों में, एक बहुमूल्यवान फ़ंक्शन एक सेट-मूल्यवान फ़ंक्शन f हैं जिसमें एक और सतत कार्य गुण है, अर्थात् सेट में एक तत्व का चुनाव प्रत्येक सेट में एक संगत तत्व को परिभाषित करता है x के करीब y के लिए और इस प्रकार स्थानीय रूप से एक सामान्य फ़ंक्शन को परिभाषित करता है।
उदाहरण
किसी फ़ंक्शन का argmax सामान्यतः बहुमूल्यवान होता है। उदाहरण के लिए, .
सेट-मूल्य विश्लेषण
सेट-वैल्यू विश्लेषण गणितीय विश्लेषण और सामान्य टोपोलॉजी की भावना में सेट का अध्ययन है।
केवल अंकों के संग्रह पर विचार करने के बजाय, सेट-वैल्यू विश्लेषण सेट के संग्रह पर विचार करता है। यदि सेटों का संग्रह टोपोलॉजी से संपन्न है, या अंतर्निहित टोपोलॉजिकल स्पेस से उपयुक्त टोपोलॉजी प्राप्त करता है, तो सेटों के अभिसरण का अध्ययन किया जा सकता है।
अधिकांश सेट-वैल्यू विश्लेषण गणितीय अर्थशास्त्र और इष्टतम नियंत्रण के अध्ययन के माध्यम से उत्पन्न हुआ, आंशिक रूप से उत्तल विश्लेषण के सामान्यीकरण के रूप में; वैरिएबल विश्लेषण शब्द का उपयोग आर. टायरेल रॉकफेलर और रोजर जे-बी वेट्स, जोनाथन बोरवेइन और एड्रियन लुईस और बोरिस मोर्दुखोविच जैसे लेखकों द्वारा किया जाता है। अनुकूलन सिद्धांत में, किसी भी न्यूनतम बिंदु के लिए आवश्यक या पर्याप्त शर्तों को समझने के लिए उपविभेदक को उपविभेदक के सन्निकटन का अभिसरण महत्वपूर्ण है।
बिंदु-मूल्य विश्लेषण से निम्नलिखित अवधारणाओं के सेट-मूल्य विस्तार मौजूद हैं: सतत (गणित), विभेदन (गणित), अभिन्न,[2] अंतर्निहित फ़ंक्शन प्रमेय, संकुचन मानचित्रण, माप सिद्धांत, निश्चित-बिंदु प्रमेय | निश्चित-बिंदु प्रमेय,[3] अनुकूलन (गणित), और टोपोलॉजिकल डिग्री सिद्धांत। विशेष रूप से, समीकरणों को समावेशन (सेट सिद्धांत) के लिए सामान्यीकृत किया जाता है, जबकि अंतर समीकरणों को विभेदक समावेशन के लिए सामान्यीकृत किया जाता है।
निरंतरता (गणित) को सामान्य बनाने वाली कई अवधारणाओं को अलग किया जा सकता है, जैसे बंद ग्राफ़ संपत्ति और हेमिकॉन्टिनिटी[lower-alpha 1]. मल्टीफ़ंक्शन के लिए माप (गणित) के विभिन्न सामान्यीकरण भी हैं।
अनुप्रयोग
सेट-वैल्यू फ़ंक्शंस इष्टतम नियंत्रण में उत्पन्न होते हैं, विशेष रूप से विभेदक समावेशन और गेम सिद्धांत के रूप में संबंधित विषय, जहां नैश संतुलन के अस्तित्व को साबित करने के लिए सेट-वैल्यू फ़ंक्शंस के लिए काकुतानी निश्चित-बिंदु प्रमेय लागू किया गया है। कई अन्य गुणों के बीच यह निरंतर कार्यों के माध्यम से ऊपरी हेमिकॉन्टिन्युअस मल्टीफंक्शन की अनुमानितता से जुड़ा हुआ है, यह बताता है कि निचले हेमिकॉन्टिनिटी की तुलना में ऊपरी हेमिकॉन्टिनिटी को अधिक पसंद क्यों किया जाता है।
फिर भी, निचले अर्ध-निरंतर मल्टीफ़ंक्शन में आमतौर पर निरंतर चयन होते हैं जैसा कि माइकल चयन प्रमेय में कहा गया है, जो परा-सुसंहत रिक्त स्थान का एक और लक्षण वर्णन प्रदान करता है।[4][5] अन्य चयन प्रमेय, जैसे ब्रेसन-कोलंबो दिशात्मक निरंतर चयन, कुराटोस्की और रील-नार्डजेवस्की मापनीय चयन प्रमेय, औमन मापनीय चयन, और विघटित मानचित्रों के लिए फ्राइस्ज़कोव्स्की चयन इष्टतम नियंत्रण और विभेदक समावेशन के सिद्धांत में महत्वपूर्ण हैं।
टिप्पणियाँ
- ↑ Some authors use the term ‘semicontinuous’ instead of ‘hemicontinuous’.
संदर्भ
- ↑ Repovš, Dušan (1998). बहुमूल्यवान मैपिंग का निरंतर चयन. Pavel Vladimirovič. Semenov. Dordrecht: Kluwer Academic. ISBN 0-7923-5277-7. OCLC 39739641.
- ↑ Aumann, Robert J. (1965). "सेट-वैल्यू फ़ंक्शंस के इंटीग्रल". Journal of Mathematical Analysis and Applications. 12 (1): 1–12. doi:10.1016/0022-247X(65)90049-1.
- ↑ Kakutani, Shizuo (1941). "ब्रौवर के निश्चित बिंदु प्रमेय का सामान्यीकरण". Duke Mathematical Journal. 8 (3): 457–459. doi:10.1215/S0012-7094-41-00838-4.
- ↑ Ernest Michael (Mar 1956). "सतत चयन. मैं" (PDF). Annals of Mathematics. Second Series. 63 (2): 361–382. doi:10.2307/1969615. hdl:10338.dmlcz/119700. JSTOR 1969615.
- ↑ Dušan Repovš; P.V. Semenov (2008). "अर्नेस्ट माइकल और सतत चयन का सिद्धांत". Topology Appl. 155 (8): 755–763. arXiv:0803.4473. doi:10.1016/j.topol.2006.06.011. S2CID 14509315.
अग्रिम पठन
- K. Deimling, Multivalued Differential Equations, Walter de Gruyter, 1992
- C. D. Aliprantis and K. C. Border, Infinite dimensional analysis. Hitchhiker's guide, Springer-Verlag Berlin Heidelberg, 2006
- J. Andres and L. Górniewicz, Topological Fixed Point Principles for Boundary Value Problems, Kluwer Academic Publishers, 2003
- J.-P. Aubin and A. Cellina, Differential Inclusions, Set-Valued Maps And Viability Theory, Grundl. der Math. Wiss. 264, Springer - Verlag, Berlin, 1984
- J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Basel, 1990
- D. Repovš and P.V. Semenov, Continuous Selections of Multivalued Mappings, Kluwer Academic Publishers, Dordrecht 1998
- E. U. Tarafdar and M. S. R. Chowdhury, Topological methods for set-valued nonlinear analysis, World Scientific, Singapore, 2008
- Mitroi, F.-C.; Nikodem, K.; Wąsowicz, S. (2013). "Hermite-Hadamard inequalities for convex set-valued functions". Demonstratio Mathematica. 46 (4): 655–662. doi:10.1515/dema-2013-0483.
यह भी देखें
- चयन प्रमेय
- उर्सेस्कु प्रमेय
श्रेणी:विभिन्न विश्लेषण श्रेणी:गणितीय अनुकूलन श्रेणी:नियंत्रण सिद्धांत