जटिल विभेदक रूप

From Vigyanwiki
Revision as of 11:03, 9 July 2023 by alpha>Neetua08

गणित में, जटिल विभेदक रूप मैनिफोल्ड (सामान्यतः जटिल मैनिफोल्ड) पर विभेदक रूप होता है जिसे जटिल संख्या गुणांक रखने की अनुमति होती है।

विभेदक ज्यामिति में जटिल रूपों का व्यापक अनुप्रयोग होता है। जटिल मैनिफोल्ड्स पर, वे मौलिक हैं और अधिकांश बीजगणितीय ज्यामिति, काहलर मीट्रिक काहलर ज्यामिति और हॉज सिद्धांत के आधार के रूप में कार्य करते हैं। गैर-जटिल मैनिफोल्ड्स पर, वे लगभग जटिल संरचनाओं, स्पिनरों के सिद्धांत और CR संरचनाओं के अध्ययन में भी भूमिका निभाते हैं।

सामान्यतः, कुछ वांछनीय अपघटन के कारण जटिल रूपों पर विचार किया जाता है जिन्हें प्रपत्र स्वीकार करते हैं। उदाहरण के लिए, जटिल मैनिफ़ोल्ड पर, किसी भी जटिल k-रूप को विशिष्ट रूप से तथाकथित (P, Q)-रूप के योग में विघटित किया जा सकता है: सामान्यतः, K वेजेस P होलोमोर्फिक का बाहरी व्युत्पन्न उनके जटिल संयुग्मों के Q विभेदक के साथ समन्वय करता है। (P, Q)-रूपों का समूह अध्ययन की आदिम वस्तु बन जाता है, और K-रूपों की तुलना में कई गुना उत्तम ज्यामितीय संरचना निर्धारित करता है। उदाहरण के लिए, ऐसे मामलों में जहां हॉज सिद्धांत लागू होता है, वहाँ और भी बेहतर संरचनाएं मौजूद हैं।

जटिल मैनिफोल्ड पर विभेदक रूप

मान लीजिए कि M जटिल आयाम N का एक जटिल मैनिफोल्ड है। फिर एक स्थानीय समन्वय प्रणाली होती है जिसमें N जटिल-मूल्य वाले फ़ंक्शन z1, ..., zn शामिल होते हैं जैसे कि एक पैच से दूसरे पैच में समन्वय संक्रमण इन चर के होलोमोर्फिक फ़ंक्शन होते हैं। जटिल रूपों का स्थान एक समृद्ध संरचना रखता है, जो मूल रूप से इस तथ्य पर निर्भर करता है कि ये संक्रमण कार्य केवल सुचारू होने के अतिरिक्त होलोमोर्फिक हैं

एकरूप

हम एकरूप के मामले से प्रारम्भ करते हैं। सबसे पहले जटिल निर्देशांकों को उनके वास्तविक और काल्पनिक भागों में विघटित करें: zj = xj + iyjप्रत्येक j के लिए दे|

कोई देखता है कि जटिल गुणांक वाले किसी भी विभेदक रूप को योग के रूप में विशिष्ट रूप से लिखा जा सकता है|

चलो मान लीजिये Ω1,0 केवल युक्त जटिल विभेदक रूपों का स्थान हो 's और Ω0,1 केवल युक्त प्रपत्रों का स्थान हो 's। कॉची-रीमैन समीकरणों द्वारा कोई यह दिखा सकता है कि रिक्त स्थान Ω1.0और Ω0,1होलोमोर्फिक समन्वय परिवर्तनों के तहत स्थिर हैं। दूसरे शब्दों में, यदि कोई भिन्न विकल्प चुनता हैi होलोमोर्फिक समन्वय प्रणाली के, फिर Ω1,0 के तत्व Ω0,1 के तत्वों की तरह, तन्य रूप से रूपांतरित होते हैं. इस प्रकार रिक्त स्थान Ω0.1और Ω1,0 कॉम्प्लेक्स मैनिफोल्ड पर जटिल सदिश बंडल निर्धारित करें।

उच्च-डिग्री फॉर्म

जटिल विभेदक रूपों के वेज उत्पाद को वास्तविक रूपों की तरह ही परिभाषित किया जाता है। मान लीजिए p और q गैर-ऋणात्मक पूर्णांकों ≤ n का युग्म है।

(p, q)-रूपों का स्थान Ωp,q , Ω1,0 से p तत्वों और Ω0,1 से q तत्वों के वेज उत्पादों के रैखिक संयोजनों को लेकर परिभाषित किया गया है।

जहां Ω1,0 के p कारक और Ω0,1 के q कारक हैं। 1-रूपों के दो स्थानों की तरह, ये निर्देशांक के होलोमोर्फिक परिवर्तनों के तहत स्थिर होते हैं, और इसलिए वेक्टर बंडलों का निर्धारण करते हैं।

यदि Ek कुल डिग्री k के सभी जटिल विभेदक रूपों का स्थान है, फिर Ek का प्रत्येक तत्व को रिक्त स्थान Ωp,q के बीच से तत्वों के रैखिक संयोजन के रूप में p + q = k के साथ एक अद्वितीय तरीके से व्यक्त किया जा सकता है। अधिक संक्षेप में, प्रत्यक्ष योग अपघटन है

क्योंकि यह प्रत्यक्ष योग अपघटन होलोमोर्फिक समन्वय परिवर्तनों के तहत स्थिर है, यह वेक्टर बंडल अपघटन भी निर्धारित करता है।

विशेष रूप से, प्रत्येक k और प्रत्येक p और q के लिए p + q = k के साथ, सदिश बंडलों का एक विहित प्रक्षेपण होता है


डॉल्बुल्ट ऑपरेटर्स

सामान्य बाहरी व्युत्पन्न अनुभागों के मानचित्रण को परिभाषित करता है के जरिए

बाहरी व्युत्पन्न अपने आप में मैनिफोल्ड की अधिक कठोर जटिल संरचना को प्रतिबिंबित नहीं करता है।

d और पिछले उपधारा में परिभाषित अनुमानों का उपयोग करके, 'डॉल्बॉल्ट ऑपरेटरों' को परिभाषित करना संभव है:

स्थानीय निर्देशांक में इन ऑपरेटरों का वर्णन करने के लिए, आइए

जहां I और J बहु-सूचकांक|बहु-सूचकांक हैं। तब

निम्नलिखित गुणों को धारण करते हुए देखा जाता है:

ये ऑपरेटर और उनके गुण डोल्बौल्ट कोहोमोलॉजी और हॉज सिद्धांत के कई पहलुओं का आधार बनाते हैं।

एक जटिल मैनिफोल्ड के स्टार डोमेन|स्टार-आकार वाले डोमेन पर डॉल्बॉल्ट ऑपरेटरों के पास दोहरे होमोटॉपी ऑपरेटर होते हैं [1] यह पोंकारे की लेम्मा के विभाजन के परिणामस्वरूप होता है .[1]यह जटिल मैनिफोल्ड पर पॉइंकेयर लेम्मा की सामग्री है।

पोंकारे लेम्मा के लिए और स्थानीय ddbar lemma|local में और सुधार किया जा सकता है -लेम्मा, जो दर्शाता है कि प्रत्येक -सटीक जटिल विभेदक रूप वास्तव में है -एकदम सही। कॉम्पैक्ट काहलर पर स्थानीय का वैश्विक रूप प्रकट होता है -लेम्मा होल्ड, जिसे डीडीबार लेम्मा के नाम से जाना जाता है| -लेम्मा. यह हॉज सिद्धांत का परिणाम है, और बताता है कि जटिल विभेदक रूप जो विश्व स्तर पर है -सटीक (दूसरे शब्दों में, जिसका डॉ कहलमज गर्भाशय में वर्ग शून्य है) विश्व स्तर पर है -एकदम सही।

होलोमोर्फिक रूप

प्रत्येक पी के लिए, 'होलोमोर्फिक पी-फॉर्म' बंडल Ωp,0 का होलोमोर्फिक खंड है . स्थानीय निर्देशांक में, होलोमोर्फिक पी-फॉर्म को फॉर्म में लिखा जा सकता है

जहां होलोमोर्फिक फ़ंक्शन हैं। समान रूप से, और कॉची-रीमैन समीकरणों के कारण#जटिल संयुग्म की स्वतंत्रता, (p, 0)-रूप α होलोमोर्फिक है यदि और केवल यदि

होलोमोर्फिक p- रूप का शीफ ​​(गणित) अक्सर Ωp,लिखा जाता है, हालांकि इससे कभी-कभी भ्रम की स्थिति पैदा हो सकती है, इसलिए कई लेखक वैकल्पिक संकेतन को अपनाने की प्रवृत्ति रखते हैं।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Kycia, Radosław Antoni (2020). Section 4. "पोंकारे लेम्मा, एंटीएक्सएक्ट फॉर्म और फर्मियोनिक क्वांटम हार्मोनिक ऑसिलेटर". Results in Mathematics (in English). 75 (3): 122. doi:10.1007/s00025-020-01247-8. ISSN 1422-6383. S2CID 199472766.