घातीय स्थिरता

From Vigyanwiki
Revision as of 21:46, 26 September 2023 by alpha>Sangeeta

नियंत्रण सिद्धांत में, सतत रैखिक अपरिवर्तनीय प्रणाली सिद्धांत (एलटीआई) तीव्रता से स्थिर होती है यदि सिस्टम में कठोरता से ऋणात्मकता वास्तविक भागों के साथ आइगेनवैल्यू (अर्थात, इनपुट-टू-आउटपुट सिस्टम के ध्रुव (जटिल विश्लेषण) हैं) (अर्थात, जटिल तल के बाएँ अर्ध भाग में)।[1] असतत-समय इनपुट-टू-आउटपुट एलटीआई प्रणाली तीव्रता से स्थिर होती है यदि केवल तभी जब इसके स्थानांतरण आवेग के ध्रुव जटिल विमान की उत्पत्ति पर केंद्रित इकाई सर्कल के अन्दर कठोरता से स्थित हों। जो सिस्टम एलटीआई नहीं हैं वे तीव्रता से स्थिर होते हैं यदि उनका अभिसरण घातीय क्षय से घिरा होता है। घातीय स्थिरता स्पर्शोन्मुख स्थिरता का रूप है, जो अधिक सामान्य गतिशील प्रणालियों के लिए मान्य है।

व्यावहारिक परिणाम

घातीय रूप से स्थिर एलटीआई प्रणाली वह है जो सीमित इनपुट या अशून्य प्रारंभिक स्थिति दिए जाने पर नष्ट नहीं होगी (अर्थात, असीमित आउटपुट देगी)। इसके अतिरिक्त, यदि सिस्टम को निश्चित, परिमित इनपुट (अर्थात, हेविसाइड स्टेप आवेग) दिया जाता है, तो आउटपुट में कोई भी परिणामी दोलन घातांकीय वृद्धि पर क्षय हो जाएगा, और आउटपुट नए अंतिम, स्थिर-अवस्था मान की ओर स्पर्शोन्मुख हो जाएगा। यदि सिस्टम को इनपुट के रूप में डायराक डेल्टा आवेग दिया जाता है, तो प्रेरित दोलन समाप्त हो जाएंगे और सिस्टम अपने पिछले मान पर वापस आ जाएगा। यदि दोलन समाप्त नहीं होते हैं, या आवेग प्रारम्भ होने पर सिस्टम अपने मूल आउटपुट पर वापस नहीं आता है, तो सिस्टम में सीमांत स्थिरता होती है।

घातांकीय रूप से स्थिर एलटीआई सिस्टम का उदाहरण

दो घातीय रूप से स्थिर प्रणालियों की आवेग प्रतिक्रियाएँ

दाईं ओर का ग्राफ़ दो समान प्रणालियों की आवेग प्रतिक्रिया को दर्शाता है। हरा वक्र आवेग प्रतिक्रिया के साथ सिस्टम की प्रतिक्रिया है , जबकि नीला रंग सिस्टम का प्रतिनिधित्व करता है चूँकि प्रतिक्रिया दोलनशील है, दोनों समय के साथ 0 के मूल मान पर वापस आ जाते हैं।

रियल वर्ल्ड का उदाहरण

लेडल में मार्बल डालने की कल्पना करें। यह अपने आप लेडल के सबसे निचले बिंदु पर स्थापित हो जाएगा और जब तक परेशान न हो, वहीं रहेगा। अब गेंद को पुश करने की कल्पना करें, जो कि डायराक डेल्टा आवेग का अनुमान है। मार्बल आगे-पीछे क्षैतिज स्थिति में जायेंगा किन्तु अंततः लेडल के तल में पुनः स्थापित हो जाएगा। समय के साथ मार्बल की क्षैतिज स्थिति को चित्रित करने से ऊपर की छवि में नीले वक्र के जैसे धीरे-धीरे कम होने वाला साइनसॉइड प्राप्त होगा।

इस स्थिति में स्टेप इनपुट के लिए मार्बल को लेडल के नीचे से दूर सहारा देने की आवश्यकता होती है, जिससे वह वापस क्षैतिज स्थिति में न जा सके। यह उसी स्थिति में रहेगा और अपने भार के समान इस निरंतर बल के अंतर्गत लेडल के नीचे से दूर नहीं जाएगा, जैसा कि तब होता जब सिस्टम केवल सीमांत रूप से स्थिर या पूर्ण रूप से अस्थिर होता।

यह ध्यान रखना महत्वपूर्ण है कि इस उदाहरण में सिस्टम सभी इनपुट के लिए स्थिर नहीं है। मार्बल को तीव्रता से पुश करिए और वह लेडल से छूटकर गिर जाएगा और फर्श पर पहुंचकर ही रुकेगा। इसलिए, कुछ प्रणालियों के लिए, यह कहना उचित है कि प्रणाली इनपुट की निश्चित सीमा पर तीव्रता से स्थिर होती है।

यह भी देखें

संदर्भ

  1. David N. Cheban (2004), Global Attractors Of Non-autonomous Dissipative Dynamical Systems. p. 47


बाहरी संबंध