डिराक ब्रैकेट
डिराक ब्रैकेट पॉल डिराक द्वारा विकसित पॉइसन ब्रैकेट का सामान्यीकरण है[1] हैमिल्टनियन यांत्रिकी में द्वितीय श्रेणी की बाधाओं के साथ शास्त्रीय प्रणालियों का इलाज करना, और इस प्रकार उन्हें विहित परिमाणीकरण से गुजरने की अनुमति देना। यह डिराक के हैमिल्टनियन यांत्रिकी के विकास का महत्वपूर्ण हिस्सा है ताकि अधिक सामान्य लैग्रेंजियन यांत्रिकी को सुरुचिपूर्ण ढंग से संभाला जा सके; विशेष रूप से, जब बाधाएं हाथ में हों, ताकि स्पष्ट चर की संख्या गतिशील चर से अधिक हो।[2] अधिक संक्षेप में, डिराक ब्रैकेट से निहित दो-रूप चरण स्थान में बाधा सतह पर सिंपलेक्टिक मैनिफ़ोल्ड का प्रतिबंध है।[3] यह लेख मानक लैग्रेंजियन यांत्रिकी और हैमिल्टनियन यांत्रिकी औपचारिकताओं से परिचित है, और विहित परिमाणीकरण से उनका संबंध मानता है। डिराक ब्रैकेट को संदर्भ में रखने के लिए डिराक की संशोधित हैमिल्टनियन औपचारिकता का विवरण भी संक्षेप में प्रस्तुत किया गया है।
मानक हैमिल्टनियन प्रक्रिया की अपर्याप्तता
हैमिल्टनियन यांत्रिकी का मानक विकास कई विशिष्ट स्थितियों में अपर्याप्त है:
- जब लैग्रेंजियन कम से कम निर्देशांक के वेग में अधिकतम रैखिक होता है; किस स्थिति में, विहित समन्वय की परिभाषा बाधा की ओर ले जाती है। डिराक ब्रैकेट का सहारा लेने का यह सबसे आम कारण है। उदाहरण के लिए, किसी भी फरमिओन्स के लिए लैग्रेंजियन (घनत्व) इस रूप का होता है।
- जब गेज फिक्सिंग (या अन्य अभौतिक) स्वतंत्रता की डिग्री होती है जिसे ठीक करने की आवश्यकता होती है।
- जब कोई अन्य बाधाएं होती हैं जिन्हें कोई चरण स्थान में लागू करना चाहता है।
वेग में लैग्रेंजियन रैखिक का उदाहरण
शास्त्रीय यांत्रिकी में उदाहरण आवेश वाला कण है q और द्रव्यमान m तक ही सीमित है x - y मजबूत स्थिरांक, सजातीय लंबवत चुंबकीय क्षेत्र के साथ विमान, तो फिर की ओर इशारा करते हुए z-शक्ति के साथ दिशा B.[4] मापदंडों के उचित विकल्प के साथ इस प्रणाली के लिए लैग्रेंजियन है
कहाँ चुंबकीय क्षेत्र के लिए सदिश क्षमता है, ; c निर्वात में प्रकाश की गति है; और V() मनमाना बाह्य अदिश विभव है; कोई इसे आसानी से द्विघात मान सकता है x और y, व्यापकता के नुकसान के बिना। हम उपयोग करते हैं
हमारी वेक्टर क्षमता के रूप में; यह z दिशा में समान और स्थिर चुंबकीय क्षेत्र B से मेल खाता है। यहां, टोपियाँ इकाई सदिशों को दर्शाती हैं। हालाँकि, बाद में लेख में, उनका उपयोग क्वांटम मैकेनिकल ऑपरेटरों को उनके शास्त्रीय एनालॉग्स से अलग करने के लिए किया जाता है। उपयोग सन्दर्भ से स्पष्ट होना चाहिए।
स्पष्ट रूप से, लैग्रेंजियन यांत्रिकी न्यायसंगत है
जो गति के समीकरणों की ओर ले जाता है
हार्मोनिक क्षमता के लिए, की ढाल V केवल निर्देशांक के बराबर है, −(x,y).
अब, बहुत बड़े चुंबकीय क्षेत्र की सीमा में, qB/mc ≫ 1. फिर कोई साधारण सन्निकट लैग्रेन्जियन उत्पन्न करने के लिए गतिज शब्द को छोड़ सकता है,
गति के प्रथम-क्रम समीकरणों के साथ
ध्यान दें कि यह अनुमानित लैग्रेंजियन वेग में रैखिक है, जो उन स्थितियों में से है जिसके तहत मानक हैमिल्टनियन प्रक्रिया टूट जाती है। हालाँकि इस उदाहरण को सन्निकटन के रूप में प्रेरित किया गया है, विचाराधीन लैग्रैन्जियन वैध है और लैग्रैन्जियन औपचारिकता में गति के लगातार समीकरणों की ओर ले जाता है।
हालाँकि, हैमिल्टनियन प्रक्रिया का पालन करते हुए, निर्देशांक से जुड़े विहित क्षण अब हैं
जो इस मायने में असामान्य हैं कि वे वेगों के व्युत्क्रमणीय नहीं हैं; इसके बजाय, वे निर्देशांक के कार्य होने के लिए बाध्य हैं: चार चरण-स्थान चर रैखिक रूप से निर्भर हैं, इसलिए परिवर्तनीय आधार अतिपूर्णता है।
लीजेंड्रे परिवर्तन तब हैमिल्टनियन का निर्माण करता है
ध्यान दें कि इस भोले हैमिल्टनियन की संवेग पर कोई निर्भरता नहीं है, जिसका अर्थ है कि गति के समीकरण (हैमिल्टन के समीकरण) असंगत हैं।
हैमिल्टनियन प्रक्रिया टूट गई है। कोई इसके दो घटकों को हटाकर समस्या को ठीक करने का प्रयास कर सकता है 4-आयामी चरण स्थान, मान लीजिए y और py, कम चरण स्थान तक 2 आयाम, जो कभी-कभी निर्देशांक को संवेग के रूप में और कभी-कभी निर्देशांक के रूप में व्यक्त करता है। हालाँकि, यह न तो कोई सामान्य और न ही कठोर समाधान है। यह मामले की तह तक जाता है: विहित संवेग की परिभाषा से चरण स्थान (संवेग और निर्देशांक के बीच) पर बाधा का पता चलता है जिस पर कभी ध्यान नहीं दिया गया।
सामान्यीकृत हैमिल्टनियन प्रक्रिया
लैग्रेंजियन यांत्रिकी में, यदि सिस्टम में होलोनोमिक बाधाएं हैं, तो आम तौर पर उनके लिए लैग्रेंजियन में लैग्रेंज गुणक को जोड़ा जाता है। जब बाधाएं संतुष्ट हो जाती हैं तो अतिरिक्त शर्तें गायब हो जाती हैं, जिससे स्थिर कार्रवाई का मार्ग बाधा सतह पर होने के लिए मजबूर हो जाता है। इस मामले में, हैमिल्टनियन औपचारिकता पर जाने से हैमिल्टनियन यांत्रिकी में चरण स्थान पर बाधा उत्पन्न होती है, लेकिन समाधान समान है।
आगे बढ़ने से पहले, 'कमजोर समानता' और 'मजबूत समानता' की धारणाओं को समझना उपयोगी है। चरण स्थान पर दो कार्य, f और g, कमजोर रूप से समान हैं यदि बाधाएं संतुष्ट होने पर वे समान हैं, लेकिन पूरे चरण स्थान में नहीं, दर्शाया गया है f ≈ g. अगर f और g बाधाओं के संतुष्ट होने से स्वतंत्र रूप से समान हैं, उन्हें दृढ़ता से समान, लिखित कहा जाता है f = g. यह ध्यान रखना महत्वपूर्ण है कि, सही उत्तर प्राप्त करने के लिए, डेरिवेटिव या पॉइसन ब्रैकेट का मूल्यांकन करने से पहले किसी भी कमजोर समीकरण का उपयोग नहीं किया जा सकता है।
नई प्रक्रिया इस प्रकार काम करती है, लैग्रेंजियन से शुरू करें और सामान्य तरीके से विहित संवेग को परिभाषित करें। उनमें से कुछ परिभाषाएँ उलटी नहीं हो सकती हैं और इसके बजाय चरण स्थान में बाधा देती हैं (जैसा कि ऊपर बताया गया है)। इस प्रकार उत्पन्न या समस्या की शुरुआत से लगाए गए अवरोधों को 'प्राथमिक अवरोध' कहा जाता है। बाधाएँ, लेबल φj, कमजोर रूप से गायब हो जाना चाहिए, φj (p,q) ≈ 0.
इसके बाद, कोई भोला-भाला हैमिल्टनियन पाता है, H, लीजेंड्रे परिवर्तन के माध्यम से सामान्य तरीके से, बिल्कुल उपरोक्त उदाहरण की तरह। ध्यान दें कि हैमिल्टनियन को हमेशा फ़ंक्शन के रूप में लिखा जा सकता है qरेत pकेवल, भले ही वेगों को संवेग के फलनों में उलटा न किया जा सके।
हैमिल्टनियन का सामान्यीकरण
डिराक का तर्क है कि हमें हैमिल्टनियन (कुछ हद तक लैग्रेंज मल्टीप्लायरों की विधि के अनुरूप) का सामान्यीकरण करना चाहिए
जहां cj स्थिरांक नहीं हैं बल्कि निर्देशांक और संवेग के कार्य हैं। चूंकि यह नया हैमिल्टनियन निर्देशांक का सबसे सामान्य कार्य है और क्षणभंगुर हैमिल्टनियन के बराबर कमजोर है, H* हैमिल्टनियन का संभवतः सबसे व्यापक सामान्यीकरण है ताकि δH * ≈ δH कब δφj ≈ 0.
को और अधिक रोशन करने के लिए cj, विचार करें कि मानक प्रक्रिया में भोले-भाले हैमिल्टनियन से गति के समीकरण कैसे प्राप्त किए जाते हैं। हैमिल्टनियन की भिन्नता को दो तरीकों से विस्तारित करता है और उन्हें बराबर सेट करता है (दबे हुए सूचकांकों और योगों के साथ कुछ संक्षिप्त संकेतन का उपयोग करके):
जहां गति के यूलर-लैग्रेंज समीकरणों और विहित गति की परिभाषा को सरल बनाने के बाद दूसरी समानता कायम है। इस समानता से, हैमिल्टनियन औपचारिकता में गति के समीकरणों का अनुमान लगाया जाता है
जहां कमजोर समानता प्रतीक अब स्पष्ट रूप से प्रदर्शित नहीं होता है, क्योंकि परिभाषा के अनुसार गति के समीकरण केवल कमजोर होते हैं। वर्तमान संदर्भ में, कोई केवल गुणांक निर्धारित नहीं कर सकता है δq और δp अलग से शून्य तक, क्योंकि भिन्नताएं कुछ हद तक बाधाओं द्वारा प्रतिबंधित हैं। विशेष रूप से, विविधताएं बाधा सतह के स्पर्शरेखा होनी चाहिए।
कोई इसका समाधान प्रदर्शित कर सकता है
विविधताओं के लिए δqn और δpn बाधाओं द्वारा प्रतिबंधित Φj ≈ 0 (यह मानते हुए कि बाधाएं कुछ नियमित कार्यों को संतुष्ट करती हैं) आम तौर पर है[5]
जहां um मनमाने कार्य हैं।
इस परिणाम के प्रयोग से गति के समीकरण बन जाते हैं
जहां uk निर्देशांक और वेग के कार्य हैं जिन्हें, सिद्धांत रूप में, उपरोक्त गति के दूसरे समीकरण से निर्धारित किया जा सकता है।
लैग्रेंजियन औपचारिकता और हैमिल्टनियन औपचारिकता के बीच लीजेंड्रे परिवर्तन को नए चर जोड़ने की कीमत पर बचाया गया है।
संगति की शर्तें
यदि, पॉइसन ब्रैकेट का उपयोग करते समय गति के समीकरण अधिक कॉम्पैक्ट हो जाते हैं f तो निर्देशांक और संवेग का कुछ कार्य है
यदि कोई मानता है कि पॉइसन ब्रैकेट के साथ uk (वेग के कार्य) मौजूद हैं; इससे कोई समस्या नहीं होती क्योंकि योगदान कमजोर रूप से गायब हो जाता है। अब, इस औपचारिकता को सार्थक बनाने के लिए कुछ स्थिरता की शर्तें हैं जिन्हें पूरा किया जाना चाहिए। यदि बाधाएं संतुष्ट होने वाली हैं, तो गति के उनके समीकरण कमजोर रूप से गायब हो जाने चाहिए, यानी हमें आवश्यकता है
उपरोक्त से चार अलग-अलग प्रकार की स्थितियाँ उत्पन्न हो सकती हैं:
- समीकरण जो स्वाभाविक रूप से गलत है, जैसे 1=0 .
- समीकरण जो संभवतः हमारे प्राथमिक अवरोधों में से किसी का उपयोग करने के बाद, समान रूप से सत्य है।
- समीकरण जो हमारे निर्देशांक और संवेग पर नई बाधाएँ डालता है, लेकिन इससे स्वतंत्र है uk.
- समीकरण जो निर्दिष्ट करने का कार्य करता है uk.
पहला मामला इंगित करता है कि प्रारंभिक लैग्रेंजियन गति के असंगत समीकरण देता है, जैसे L = q. दूसरा मामला कोई नया योगदान नहीं देता.
तीसरा मामला चरण स्थान में नई बाधाएँ देता है। इस तरीके से प्राप्त बाधा को द्वितीयक बाधा कहा जाता है। द्वितीयक बाधा का पता चलने पर उसे विस्तारित हैमिल्टनियन में जोड़ना चाहिए और नई स्थिरता स्थितियों की जांच करनी चाहिए, जिसके परिणामस्वरूप और भी अधिक बाधाएं उत्पन्न हो सकती हैं। इस प्रक्रिया को तब तक दोहराएँ जब तक कोई और बाधा न रह जाए। प्राथमिक और द्वितीयक बाधाओं के बीच अंतर काफी हद तक कृत्रिम है (अर्थात ही प्रणाली के लिए बाधा लैग्रेंजियन के आधार पर प्राथमिक या माध्यमिक हो सकती है), इसलिए यह लेख यहां से उनके बीच अंतर नहीं करता है। यह मानते हुए कि स्थिरता की स्थिति को तब तक दोहराया गया है जब तक कि सभी बाधाएँ नहीं मिल जातीं φjउन सभी को अनुक्रमित करेगा। ध्यान दें कि यह लेख किसी भी बाधा के लिए द्वितीयक बाधा का उपयोग करता है जो प्रारंभ में समस्या में नहीं थी या विहित संवेग की परिभाषा से ली गई थी; कुछ लेखक द्वितीयक बाधाओं, तृतीयक बाधाओं आदि के बीच अंतर करते हैं।
अंत में, अंतिम मामला ठीक करने में मदद करता है uk. यदि, इस प्रक्रिया के अंत में, uk पूरी तरह से निर्धारित नहीं हैं, तो इसका मतलब है कि सिस्टम में स्वतंत्रता की अभौतिक (गेज) डिग्री हैं। बार सभी बाधाओं (प्राथमिक और माध्यमिक) को भोले हैमिल्टनियन में जोड़ दिया जाता है और स्थिरता की स्थिति के समाधान के लिए uk को प्लग इन किया जाता है, परिणाम को कुल हैमिल्टनियन कहा जाता है।
का निर्धारण uk
यूk प्रपत्र के अमानवीय रैखिक समीकरणों के सेट को हल करना होगा
उपरोक्त समीकरण में कम से कम समाधान होना चाहिए, अन्यथा प्रारंभिक लैग्रेंजियन असंगत है; हालाँकि, स्वतंत्रता की गेज डिग्री वाले सिस्टम में, समाधान अद्वितीय नहीं होगा। सबसे सामान्य समाधान प्रपत्र का है
कहाँ Uk विशेष समाधान है और Vk सजातीय समीकरण का सबसे सामान्य समाधान है
सबसे सामान्य समाधान उपरोक्त सजातीय समीकरण के रैखिक रूप से स्वतंत्र समाधानों का रैखिक संयोजन होगा। रैखिक रूप से स्वतंत्र समाधानों की संख्या की संख्या के बराबर होती है uk (जो बाधाओं की संख्या के समान है) चौथे प्रकार की स्थिरता स्थितियों की संख्या घटाएं (पिछले उपधारा में)। यह सिस्टम में स्वतंत्रता की अभौतिक डिग्री की संख्या है। रैखिक स्वतंत्र समाधानों को लेबल करना Vka जहां सूचकांक a से चलती है 1 स्वतंत्रता की अभौतिक डिग्री की संख्या के लिए, स्थिरता की स्थिति का सामान्य समाधान रूप का है
जहां vaसमय के पूर्णतः मनमाने कार्य हैं। का अलग विकल्प va गेज परिवर्तन से मेल खाता है, और सिस्टम की भौतिक स्थिति को अपरिवर्तित छोड़ देना चाहिए।[6]
कुल हैमिल्टनियन
इस बिंदु पर, कुल हैमिल्टनियन का परिचय देना स्वाभाविक है
और क्या दर्शाया गया है
चरण स्थान पर किसी फ़ंक्शन का समय विकास, f द्वारा शासित है
बाद में, विस्तारित हैमिल्टनियन को पेश किया गया। गेज-अपरिवर्तनीय (भौतिक रूप से मापने योग्य मात्रा) मात्राओं के लिए, सभी हैमिल्टनवासियों को समान समय विकास देना चाहिए, क्योंकि वे सभी कमजोर रूप से समतुल्य हैं। यह केवल नॉनगेज-अपरिवर्तनीय मात्राओं के लिए है कि भेद महत्वपूर्ण हो जाता है।
डिराक ब्रैकेट
डिराक की संशोधित हैमिल्टनियन प्रक्रिया में गति के समीकरण खोजने के लिए ऊपर वह सब कुछ है जो आवश्यक है। हालाँकि, गति के समीकरण होना सैद्धांतिक विचारों का अंतिम बिंदु नहीं है। यदि कोई सामान्य प्रणाली को प्रामाणिक रूप से परिमाणित करना चाहता है, तो उसे डिराक कोष्ठक की आवश्यकता होती है। डिराक कोष्ठक को परिभाषित करने से पहले, प्रथम श्रेणी और द्वितीय श्रेणी की बाधाओं को पेश करने की आवश्यकता है।
हम फ़ंक्शन कहते हैं f(q, p) निर्देशांक और संवेग प्रथम श्रेणी के यदि इसका पॉइसन ब्रैकेट सभी बाधाओं के साथ कमजोर रूप से गायब हो जाता है, अर्थात,
सभी के लिए j. ध्यान दें कि एकमात्र मात्राएँ जो कमजोर रूप से गायब हो जाती हैं वे बाधाएँ हैं φj, और इसलिए जो कुछ भी कमजोर रूप से गायब हो जाता है वह दृढ़ता से बाधाओं के रैखिक संयोजन के बराबर होना चाहिए। कोई यह प्रदर्शित कर सकता है कि दो प्रथम श्रेणी मात्राओं का पॉइसन ब्रैकेट भी प्रथम श्रेणी होना चाहिए। प्रथम श्रेणी की बाधाएं पहले उल्लिखित स्वतंत्रता की अभौतिक डिग्री के साथ घनिष्ठ रूप से जुड़ी हुई हैं। अर्थात्, स्वतंत्र प्रथम श्रेणी बाधाओं की संख्या स्वतंत्रता की अभौतिक डिग्री की संख्या के बराबर है, और इसके अलावा, प्राथमिक प्रथम श्रेणी बाधाएं गेज परिवर्तन उत्पन्न करती हैं। डिराक ने आगे कहा कि सभी माध्यमिक प्रथम श्रेणी की बाधाएँ गेज परिवर्तनों के जनक हैं, जो गलत साबित होती हैं; हालाँकि, आम तौर पर कोई इस धारणा के तहत काम करता है कि इस उपचार का उपयोग करते समय सभी प्रथम श्रेणी की बाधाएं गेज परिवर्तन उत्पन्न करती हैं।[7] जब प्रथम श्रेणी के माध्यमिक अवरोधों को हैमिल्टनियन में मनमाने ढंग से जोड़ा जाता है va जैसे ही कुल हैमिल्टनियन पर पहुंचने के लिए प्रथम श्रेणी की प्राथमिक बाधाओं को जोड़ा जाता है, तो व्यक्ति को विस्तारित हैमिल्टनियन प्राप्त होता है। विस्तारित हैमिल्टनियन किसी भी गेज-निर्भर मात्रा के लिए सबसे सामान्य संभव समय विकास देता है, और वास्तव में लैग्रेंजियन औपचारिकता से गति के समीकरणों को सामान्यीकृत कर सकता है।
डिराक ब्रैकेट को शुरू करने के प्रयोजनों के लिए, प्रथम श्रेणी बाधा#द्वितीय श्रेणी बाधाएं अधिक तात्कालिक रुचि की हैं। द्वितीय श्रेणी की बाधाएं ऐसी बाधाएं हैं जिनमें कम से कम अन्य बाधा के साथ गैर-लुप्त होने वाला पॉइसन ब्रैकेट होता है।
उदाहरण के लिए, द्वितीय श्रेणी की बाधाओं पर विचार करें φ1 और φ2 जिसका पॉइसन ब्रैकेट बस स्थिरांक है, c,
अब, मान लीजिए कि कोई विहित परिमाणीकरण को नियोजित करना चाहता है, तो चरण-अंतरिक्ष निर्देशांक ऑपरेटर बन जाते हैं जिनके कम्यूटेटर बन जाते हैं iħ उनके शास्त्रीय पॉइसन ब्रैकेट का समय। यह मानते हुए कि ऐसे कोई ऑर्डरिंग मुद्दे नहीं हैं जो नए क्वांटम सुधारों को जन्म देते हैं, इसका तात्पर्य यह है
जहां टोपियां इस तथ्य पर जोर देती हैं कि बाधाएं ऑपरेटरों पर हैं।
ओर, विहित परिमाणीकरण उपरोक्त रूपान्तरण संबंध देता है, लेकिन दूसरी ओर φ1 और φ2 ऐसी बाधाएं हैं जो भौतिक अवस्थाओं पर गायब होनी चाहिए, जबकि दाहिना हाथ गायब नहीं हो सकता। यह उदाहरण पॉइसन ब्रैकेट के कुछ सामान्यीकरण की आवश्यकता को दर्शाता है जो सिस्टम की बाधाओं का सम्मान करता है, और जो सुसंगत परिमाणीकरण प्रक्रिया की ओर ले जाता है। यह नया ब्रैकेट द्विरेखीय, एंटीसिमेट्रिक होना चाहिए, पॉइसन ब्रैकेट की तरह जैकोबी पहचान को संतुष्ट करना चाहिए, अप्रतिबंधित प्रणालियों के लिए पॉइसन ब्रैकेट को कम करना चाहिए, और, इसके अतिरिक्त, किसी भी अन्य मात्रा के साथ किसी भी द्वितीय श्रेणी की बाधा का ब्रैकेट गायब होना चाहिए।
इस बिंदु पर, द्वितीय श्रेणी की बाधाओं को लेबल किया जाएगा . प्रविष्टियों के साथ मैट्रिक्स परिभाषित करें
इस मामले में, चरण स्थान पर दो कार्यों का डिराक ब्रैकेट, f और g, परिभाषित किया जाता है
कहाँ M−1ab दर्शाता है abकी प्रविष्टि M का व्युत्क्रम मैट्रिक्स। डिराक ने यह साबित कर दिया M सदैव उलटा रहेगा.
यह जांचना सीधा है कि डिराक ब्रैकेट की उपरोक्त परिभाषा सभी वांछित गुणों को संतुष्ट करती है, और विशेष रूप से अंतिम, तर्क के लिए गायब हो जाती है जो द्वितीय श्रेणी की बाधा है।
विवश हैमिल्टनियन प्रणाली पर विहित परिमाणीकरण लागू करते समय, ऑपरेटरों के कम्यूटेटर को प्रतिस्थापित किया जाता है iħ उनके शास्त्रीय डिराक ब्रैकेट का समय। चूंकि डिराक ब्रैकेट बाधाओं का सम्मान करता है, इसलिए किसी भी कमजोर समीकरण का उपयोग करने से पहले सभी ब्रैकेट का मूल्यांकन करने में सावधानी बरतने की आवश्यकता नहीं है, जैसा कि पॉइसन ब्रैकेट के मामले में है।
ध्यान दें कि जबकि बोसोनिक (ग्रासमैन सम) चर का पॉइसन ब्रैकेट स्वयं गायब हो जाना चाहिए, ग्रासमैन संख्या के रूप में दर्शाए गए फर्मियन के पॉइसन ब्रैकेट को गायब होने की आवश्यकता नहीं है। इसका मतलब यह है कि फर्मियोनिक मामले में विषम संख्या में द्वितीय श्रेणी की बाधाएं होना संभव है।
दिए गए उदाहरण पर चित्रण
उपरोक्त उदाहरण पर लौटते हुए, अनुभवहीन हैमिल्टनियन और दो प्राथमिक बाधाएँ हैं
इसलिए, विस्तारित हैमिल्टनियन लिखा जा सकता है
अगला कदम स्थिरता की शर्तों को लागू करना है {Φj, H*}PB ≈ 0, जो इस मामले में बन जाता है
ये द्वितीयक बाधाएँ नहीं हैं, बल्कि स्थितियाँ हैं जो ठीक करती हैं u1 और u2. इसलिए, कोई माध्यमिक बाधाएं नहीं हैं और मनमाना गुणांक पूरी तरह से निर्धारित हैं, जो दर्शाता है कि स्वतंत्रता की कोई अभौतिक डिग्री नहीं हैं।
यदि कोई के मानों के साथ प्लग इन करता है u1 और u2, तो कोई देख सकता है कि गति के समीकरण हैं
जो आत्मनिर्भर हैं और गति के लैग्रेंजियन समीकरणों से मेल खाते हैं।
साधारण गणना इसकी पुष्टि करती है φ1 और φ2 चूँकि द्वितीय श्रेणी की बाधाएँ हैं
इसलिए मैट्रिक्स जैसा दिखता है
जिसे आसानी से उलटा किया जा सकता है
कहाँ εab लेवी-सिविटा प्रतीक है। इस प्रकार, डिराक कोष्ठक को परिभाषित किया गया है
यदि कोई हमेशा पॉइसन ब्रैकेट के बजाय डिराक ब्रैकेट का उपयोग करता है, तो बाधाओं को लागू करने और अभिव्यक्तियों का मूल्यांकन करने के क्रम के बारे में कोई समस्या नहीं है, क्योंकि कमजोर रूप से शून्य किसी भी चीज का डिराक ब्रैकेट दृढ़ता से शून्य के बराबर होता है। इसका मतलब यह है कि कोई व्यक्ति गति के सही समीकरण प्राप्त करने के लिए डायराक कोष्ठक के साथ सरल हैमिल्टनियन का उपयोग कर सकता है, जिसकी पुष्टि उपरोक्त समीकरणों पर आसानी से की जा सकती है।
सिस्टम को परिमाणित करने के लिए, सभी चरण स्थान चर के बीच डायराक ब्रैकेट की आवश्यकता होती है। इस प्रणाली के लिए गैर-लुप्त होने वाले डिराक ब्रैकेट हैं
जबकि क्रॉस-टर्म गायब हो जाते हैं, और
इसलिए, विहित परिमाणीकरण का सही कार्यान्वयन रूपान्तरण संबंधों को निर्धारित करता है,
क्रॉस शर्तों के लुप्त होने के साथ, और
इस उदाहरण के बीच गैर-लुप्त होने वाला कम्यूटेटर है और , जिसका अर्थ है कि यह संरचना गैर-अनुवांशिक ज्यामिति निर्दिष्ट करती है। (चूंकि दोनों निर्देशांक आवागमन नहीं करते हैं, इसलिए इनके लिए अनिश्चितता सिद्धांत होगा x और y पद.)
हाइपरस्फेयर के लिए आगे का चित्रण
इसी प्रकार, हाइपरस्फीयर पर मुक्त गति के लिए Sn, द n + 1 निर्देशांक बाधित हैं, xi xi = 1. सादे गतिज लैग्रेंजियन से, यह स्पष्ट है कि उनका संवेग उनके लंबवत है, xi pi = 0. इस प्रकार संबंधित डायराक ब्रैकेट्स को कार्यान्वित करना भी आसान है,[8]
(2n + 1) बाधित चरण-स्थान चर (xi, pi) की तुलना में बहुत सरल डिराक कोष्ठक का पालन करें 2n अप्रतिबंधित चर, ने इनमें से को हटा दिया था xs और pदो बाधाओं के माध्यम से अब इनिटियो, जो सादे पॉइसन ब्रैकेट का पालन करेगा। डिराक ब्रैकेट अत्यधिक (बाधित) चरण-स्थान चर की कीमत पर सादगी और लालित्य जोड़ते हैं।
उदाहरण के लिए, किसी वृत्त पर मुक्त गति के लिए, n = 1, के लिए x1 ≡ z और उन्मूलन x2 वृत्त बाधा से अप्रतिबंधित की प्राप्ति होती है
गति के समीकरणों के साथ
दोलन; जबकि समतुल्य विवश प्रणाली के साथ H = p2/2 = E पैदावार
- :
जहां से, तुरंत, वस्तुतः निरीक्षण द्वारा, दोनों चर के लिए दोलन,
यह भी देखें
- विहित परिमाणीकरण
- हैमिल्टनियन यांत्रिकी
- पॉइसन ब्रैकेट
- मोयल ब्रैकेट
- प्रथम श्रेणी की बाधा
- द्वितीय श्रेणी की बाधाएँ
- लैग्रेंजियन (क्षेत्र सिद्धांत)
- सिम्पेक्टिक संरचना
- अतिपूर्णता
संदर्भ
- ↑ Dirac, P. A. M. (1950). "सामान्यीकृत हैमिल्टनियन गतिशीलता". Canadian Journal of Mathematics. 2: 129–014. doi:10.4153/CJM-1950-012-1. S2CID 119748805.
- ↑ Dirac, Paul A. M. (1964). क्वांटम यांत्रिकी पर व्याख्यान. Belfer Graduate School of Science Monographs Series. Vol. 2. Belfer Graduate School of Science, New York. ISBN 9780486417134. MR 2220894.; Dover, ISBN 0486417131.
- ↑ See pages 48-58 of Ch. 2 in Henneaux, Marc and Teitelboim, Claudio, Quantization of Gauge Systems. Princeton University Press, 1992. ISBN 0-691-08775-X
- ↑ Dunne, G.; Jackiw, R.; Pi, S. Y.; Trugenberger, C. (1991). "स्व-दोहरी चेर्न-साइमन्स सॉलिटॉन और द्वि-आयामी गैर-रेखीय समीकरण". Physical Review D. 43 (4): 1332–1345. Bibcode:1991PhRvD..43.1332D. doi:10.1103/PhysRevD.43.1332. PMID 10013503.
- ↑ See page 8 in Henneaux and Teitelboim in the references.
- ↑ Weinberg, Steven, The Quantum Theory of Fields, Volume 1. Cambridge University Press, 1995. ISBN 0-521-55001-7
- ↑ See Henneaux and Teitelboim, pages 18-19.
- ↑ Corrigan, E.; Zachos, C. K. (1979). "Non-local charges for the supersymmetric σ-model". Physics Letters B. 88 (3–4): 273. Bibcode:1979PhLB...88..273C. doi:10.1016/0370-2693(79)90465-9.