विभिन्न वास्तविक चर का फलन
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (November 2017) (Learn how and when to remove this template message) |
फ़ंक्शन |
---|
x ↦ f (x) |
डोमेन और कोडोमैन के उदाहरण |
कक्षाएं/गुण |
कंस्ट्रक्शन |
सामान्यीकरण |
गणितीय विश्लेषण और इसके अनुप्रयोगों में, कई वास्तविक चर या वास्तविक बहुभिन्नरूपी प्रकार्य का एक प्रकार्य(गणित) एक से अधिक तर्क के साथ होता है, जिसमें सभी तर्क वास्तविक संख्या चर होते हैं। यह अवधारणा एक वास्तविक चर के कार्य के विचार को कई चरों तक फैलाती है। निविष्ट चर वास्तविक मान लेते हैं, जबकि निर्गत, जिसे प्रकार्य का मान भी कहा जाता है वह वास्तविक या सम्मिश्र संख्या हो सकता है। हालाँकि, जटिल-मूल्यवान कार्यों का अध्ययन वास्तविक विश्लेषण के लिए आसानी से वास्तविक-मूल्यवान कार्यों का अध्ययन, जटिल कार्य के वास्तविक और काल्पनिक संख्या भागों पर विचार करके कम किया जा सकता है; तथापि, जब तक स्पष्ट रूप से निर्दिष्ट नहीं किया जाता है, इस लेख में केवल वास्तविक-मूल्यवान कार्यों पर विचार किया जाएगा।
n चर के एक प्रकार्य के कार्यक्षेत्र का उपसमुच्चय है जिसके लिए प्रकार्य परिभाषित किया गया है। हमेशा की तरह, कई वास्तविक चरों के एक प्रकार्य के कार्यक्षेत्र में एक गैर-खाली खुला का उपसमुच्चय होना चाहिए।
सामान्य परिभाषा
n वास्तविक चरों का वास्तविक-मूल्यवान फलन एक ऐसा फलन है जो n वास्तविक संख्याओं को निविष्ट के रूप में लेता है, सामान्यतः चर x1, x2, …, xn द्वारा दर्शाई जाती हैं, एक अन्य वास्तविक संख्या उत्पन्न करने के लिए, फलन का मान, जिसे सामान्यतः f(x1, x2, …, xn) लक्षित किया जाता है। सादगी के लिए, इस लेख में कई वास्तविक चरों के वास्तविक-मूल्यवान प्रकार्य को केवल एक प्रकार्य कहा जाएगा। किसी भी अस्पष्टता से बचने के लिए, होने वाले अन्य प्रकार के कार्यों को स्पष्ट रूप से निर्दिष्ट किया जाएगा।
कुछ कार्यों को चर के सभी वास्तविक मूल्यों के लिए परिभाषित किया गया है(वह कहता है कि वे हर जगह परिभाषित हैं), लेकिन कुछ अन्य कार्यों को केवल तभी परिभाषित किया जाता है जब चर का मान एक उपसमुच्चय Rn का X में लिया जाता है, प्रकार्य का कार्यक्षेत्र, जिसमें हमेशा Rn का एक खुला उपसमुच्चय अंतर्ग्रस्त होना चाहिए। दूसरे शब्दों में, n का एक वास्तविक-मूल्यवान कार्य वास्तविक चर का एक कार्य है।
ऐसे कि इसका कार्यक्षेत्र X का उपसमुच्चय Rn है जिसमें एक गैर-खाली खुला समुच्चय होता है।
X का एक तत्व n-टुपल(गणित) (x1, x2, …, xn) है(सामान्यतः कोष्ठक द्वारा सीमांकित), निर्दिष्ट कार्यों के लिए सामान्य संकेतन f((x1, x2, …, xn)) होगा। सामान्य उपयोग, दोहरे कोष्ठकों का उपयोग नहीं करना और केवल f(x1, x2, …, xn) लिखना समुच्चय के बीच कार्यों की सामान्य परिभाषा से बहुत पुराना है।
बोल्डफेस x, रेखांकित x, या ओवरएरो x x→. जैसे सदिश के लिए समान चिन्हांकन का उपयोग करके n-टुपल (x1, x2, …, xn) को संक्षिप्त करना भी सामान्य है।
दो चरों में प्रकार्य का एक सरल उदाहरण हो सकता है:
जो एक शंकु का घनफल V आधार क्षेत्र A और ऊंचाई h के साथ आधार से लंबवत मापा जाता है। कार्यक्षेत्र सभी चरों को धनात्मक होने के लिए प्रतिबंधित करता है क्योंकि लंबाई और क्षेत्र धनात्मक होने चाहिए।
दो चर में प्रकार्य के उदाहरण के लिए:
- जहाँ पर a तथा b वास्तविक गैर-शून्य स्थिरांक हैं। त्रि-आयामी कार्तीय समन्वय प्रणाली का उपयोग करके, जहां xy विमान कार्यक्षेत्र R2 है और z अक्ष सहकार्यक्षेत्र R है, कोई छवि को दो-आयामी विमान के रूप में देख सकता है, जिसमें a ढलान धनात्मक x दिशा में और b का ढलान धनात्मक y दिशा में है। प्रकार्य R2 के सभी बिंदुओं (x, y) पर अच्छी तरह से परिभाषित है। पिछले उदाहरण को उच्च आयामों तक आसानी से बढ़ाया जा सकता है:
p के लिये गैर-शून्य वास्तविक स्थिरांक a1, a2, …, ap, जो p-आयामी अधिसमतल का वर्णन करता है।
यूक्लिडीय मानदंड:
n चर का एक प्रकार्य भी है जो हर जगह परिभाषित है, जबकि
x ≠ (0, 0, …, 0) के लिए ही परिभाषित किया गया है .
दो चर में एक गैर रेखीय उदाहरण प्रकार्य के लिए:
जो सभी बिंदुओं को X में लेता है, समतल R2 में √8 त्रिज्या की एक चक्रिका(गणित) मूल (x, y) = (0, 0) में संवेधन होती है और R में एक बिंदु लौटाती है। प्रकार्य में मूल (x, y) = (0, 0) अंतर्ग्रस्त नहीं है, यदि किया तो f उस बिंदु पर अपूर्णरूप से परिभाषित किया जाएगा। कार्यक्षेत्र R2 के रूप में x- समतल के साथ एक 3D कार्तीय समन्वय प्रणाली का उपयोग करने और z अक्ष सहकार्यक्षेत्र R छवि को एक घुमावदार सतह के रूप में देखा जा सकता है।
X में प्रकार्य का मूल्यांकन (x, y) = (2, √3) बिंदु पर किया जा सकता है:
हालाँकि, फ़ंक्शन का मूल्यांकन नहीं किया जा सकता है, कल्पना कीजिये
इन मूल्यों के बाद से x तथा y कार्यक्षेत्र के नियम को पूरा नहीं करते।
छवि
किसी प्रकार्य f(x1, x2, …, xn) की छवि(गणित) f के सभी मानों का समुच्चय है जब n-टुपल (x1, x2, …, xn) f के पूरे कार्यक्षेत्र में चलता है। निरंतर(परिभाषा के लिए नीचे देखें) वास्तविक-मूल्यवान प्रकार्य के लिए जिसमें एक संसक्त कार्यक्षेत्र है, उसकी छवि या तो अंतःस्तर(गणित) या एकल मान है। अनुवर्ती प्रकरण में, प्रकार्य एक स्थिर प्रकार्य है।
दी गई वास्तविक संख्या की पूर्वछवि c को स्तर समुच्चय कहा जाता है। यह समीकरण f(x1, x2, …, xn) = c के समाधान का समुच्चय है।
कार्यक्षेत्र
This section does not cite any sources. (November 2017) (Learn how and when to remove this template message) |
कई वास्तविक चरों वाले फलन के फलन का प्रांत एक उपसमुच्चय Rn होता है यह कभी-कभी, लेकिन हमेशा स्पष्ट रूप से परिभाषित नहीं होता है। वास्तव में, यदि कोई कार्यक्षेत्र X को एक प्रकार्य f प्रतिबंधित करता है एक उपसमुच्चय Y ⊂ X के लिए, किसी को औपचारिक रूप से एक अलग कार्य मिलता है, Y के प्रति f का प्रतिबंध, जिसे निरूपित किया जाता है। अभ्यास में, यह प्रायः(लेकिन हमेशा नहीं) f तथा पहचानने के लिए और प्रतिबंधक |Y को छोड़ने के लिए हानिकारक नहीं होता है।
इसके विपरीत, कभी-कभी किसी दिए गए प्रकार्य के कार्यक्षेत्र को स्वाभाविक रूप से बढ़ाना संभव होता है, उदाहरण के लिए निरंतर कार्य या विश्लेषणात्मक निरंतरता से।
इसके अलावा, कई कार्यों को इस तरह से परिभाषित किया गया है कि उनके कार्यक्षेत्र को स्पष्ट रूप से निर्दिष्ट करना मुश्किल है। उदाहरण के लिए, एक दिए गए प्रकार्य f में, प्रकार्य के कार्यक्षेत्र को निर्दिष्ट करना मुश्किल हो सकता है यदि f एक बहुभिन्नरूपी बहुपद है,(जिसमें एक कार्यक्षेत्र के रूप में है), यह परीक्षण करना और भी मुश्किल है कि क्या g का कार्यक्षेत्र भी है। यह परीक्षण के बराबर है कि क्या एक बहुपद हमेशा सकारात्मक होता है, और एक सक्रिय शोध क्षेत्र का उद्देश्य है(सकारात्मक बहुपद देखें)।
बीजगणितीय संरचना
वास्तविक पर अंकगणित के सामान्य संचालन को निम्नलिखित तरीके से कई वास्तविक चरों के वास्तविक-मूल्यवान कार्यों तक बढ़ाया जा सकता है:
- प्रत्येक वास्तविक संख्या r के लिए , निरंतर कार्य हर जगह परिभाषित है।
- प्रत्येक वास्तविक संख्या r के लिए और हर प्रकार्य f, प्रकार्य: के समान कार्यक्षेत्र f है (या हर जगह r = 0 परिभाषित किया गया है)।
- यदि f तथा g संबंधित कार्यक्षेत्र के दो कार्य X तथा Y हैं इस प्रकार कि X ∩ Y का एक गैर-खाली खुला Rn का उपसमुच्चय अंतर्ग्रस्त है, फिर तथाऐसे कार्य हैं जिनमें कार्यक्षेत्र युक्त X ∩ Y है।
यह इस प्रकार है कि n के कार्य चर जो हर जगह परिभाषित हैं और कार्य के n चर जो किसी दिए गए बिंदु के कुछ प्रतिवैस(गणित) में परिभाषित होते हैं, दोनों वास्तविक रूप से क्रम विनिमेय बीजगणित(संरचना) बनाते हैं(R- बीजगणित)। यह प्रकार्य स्थल का एक प्रोटोटाइपिकल उदाहरण है।
कोई इसी तरह परिभाषित कर सकता है
जो केवल एक कार्य है यदि अंक का समुच्चय(x1, …,xn) f के कार्यक्षेत्र में ऐसे है कि f(x1, …, xn) ≠ 0 Rn का एक खुला उपसमुच्चय अंतर्ग्रस्त है। इस प्रतिबंध का तात्पर्य है कि उपरोक्त दो बीजगणित क्षेत्र(गणित) नहीं हैं।
एक बहुभिन्नरूपी कार्य से जुड़े अविभाज्य कार्य
चर को छोड़कर सभी को स्थिर मान देकर एक वास्तविक चर में प्रकार्य आसानी से प्राप्त किया जा सकता है। उदाहरण के लिए, यदि (a1, …, an) प्रकार्य के कार्यक्षेत्र के अंतस्थ(सांस्थिति) का एक बिंदु f है, हम x2, …, xn प्रति a2, …, an के मूल्यों को ठीक कर सकते हैं। क्रमशः, एक अविभाज्य कार्य प्राप्त करने के लिए
जिसका कार्यक्षेत्र पर केंद्रित एक अंतराल a1 होता है। इस फलन को समीकरण xi = ai के लिये i = 2, …, n द्वारा परिभाषित रेखा पर फलन f के प्रतिबंध के रूप में भी देखा जा सकता है।
f से गुजरने वाली किसी भी रेखा के लिए (a1, …, an) अन्य अविभाज्य कार्यों को प्रतिबंधित करके परिभाषित किया जा सकता है। ये कार्य हैं:
जहां ci वास्तविक संख्याएँ हैं जो सभी शून्य नहीं हैं।
अगले भाग में, हम दिखाएंगे कि, यदि बहुचर फलन संतत है, तो ये सभी अपरिवर्तनीय फलन भी हैं, लेकिन इसका विलोम आवश्यक रूप से सत्य नहीं है।
निरंतरता और सीमा
19वीं शताब्दी के दूसरे भाग तक, गणितज्ञों द्वारा केवल निरंतर कार्यों पर विचार किया जाता था। उस समय, एक सांस्थितिक समष्टि की औपचारिक परिभाषा और सांस्थितिक समष्टि के बीच एक सतत मानचित्र से काफी पहले एक या कई वास्तविक चर के कार्यों के लिए निरंतरता की धारणा को विस्तृत किया गया था। चूंकि कई वास्तविक चर के निरंतर कार्य गणित में सर्वव्यापी हैं, इसलिए इस धारणा को सांस्थितिक समष्टि के बीच निरंतर मानचित्रों की सामान्य धारणा के संदर्भ के बिना परिभाषित करना उचित है।
निरंतरता को परिभाषित करने के लिए, Rn के दूरी प्रकार्य पर विचार करना उपयोगी होता है, जो 2n वास्तविक चरों का सर्वत्र परिभाषित फलन है:
एक प्रकार्य f एक बिंदु a = (a1, …, an) पर निरंतर है जो अपने कार्यक्षेत्र के लिए आंतरिक(सांस्थिति) है, यदि, प्रत्येक सकारात्मक वास्तविक संख्या ε के लिए, एक धनात्मक वास्तविक संख्या φ है ऐसे है कि |f(x) − f(a)| < ε सभी के लिए x ऐसे है कि d(x a) < φ। दूसरे शब्दों में, φ को इतना छोटा चुना जा सकता है कि f द्वारा छवि प्राप्त की जा सके जिसमे गेंद की त्रिज्या φ a पर केंद्रित है और लंबाई के अंतराल f(a) में निहित 2ε पर केंद्रित है। कोई फलन संतत होता है यदि वह अपने प्रांत के प्रत्येक बिंदु पर संतत हो।
यदि कोई प्रकार्य f(a) निरंतर है, फिर सभी अविभाज्य कार्य जो सभी चरों xi को ठीक करके प्राप्त किए जाते हैं ai मूल्य पर एक को छोड़कर, f(a) पर निरंतर हैं। बातचीत झूठी है; इसका मतलब यह है कि ये सभी अविभाज्य कार्य एक ऐसे कार्य के लिए निरंतर हो सकते हैं जो f(a) पर निरंतर नहीं है। उदाहरण के लिए, प्रकार्य f पर विचार करें ऐसे कि f(0, 0) = 0, और अन्यथा निम्न द्वारा परिभाषित किया गया है:
कार्य x ↦ f(x, 0) तथा y ↦ f(0, y) दोनों स्थिर और शून्य के बराबर हैं, और इसलिए निरंतर हैं। प्रकार्य f (0, 0) पर निरंतर नहीं है, क्योंकि यदि ε < 1/2 तथा y = x2 ≠ 0 तब हमारे पास f(x, y) = 1/2 है, भले ही |x| बहुत छोटी है। हालांकि निरंतर नहीं, इस फलन का एक और गुण है कि इसे(0, 0) से गुजरने वाली रेखा तक सीमित करके प्राप्त किए गए सभी अविभाज्य फलन भी सतत होते हैं। हमारे पास है:
λ ≠ 0 के लिये
कई वास्तविक चरों के वास्तविक-मूल्यवान प्रकार्य के एक बिंदु पर सीमा(गणित) को निम्नानुसार परिभाषित किया गया है।[1] अनुमति दें कि a = (a1, a2, …, an) प्रकार्य f के कार्यक्षेत्र X के संवरण(सांस्थिति) में बिंदु बनें। प्रकार्य, f कि एक सीमा L है जब x a की ओर प्रवृत्त होता है, निरूपित
यदि निम्न स्थिति संतुष्ट है: हर सकारात्मक वास्तविक संख्या ε > 0 के लिए , एक धनात्मक वास्तविक संख्या δ > 0 है ऐसा है कि:
सभी के लिए x कार्यक्षेत्र में ऐसा है
यदि सीमा मौजूद है, तो यह अद्वितीय है। यदि a कार्यक्षेत्र के अंतस्थ में है, सीमा उपस्थित है यदि और केवल यदि प्रकार्य a पर निरंतर है। इस मामले में, हमारे पास है
जब a f के कार्यक्षेत्र की सीमा(सांस्थिति) में है, और यदि f की सीमा a होती है, बाद वाला सूत्र निरंतरता द्वारा f प्रति a के कार्यक्षेत्र का विस्तार करने की अनुमति देता है।
समरूपता
एक सममित कार्य एक कार्य f है यह अपरिवर्तित रहता है जब दो चर xi तथा xj अंतर्विनिमय करते हैं:
जहाँ पर i तथा j प्रत्येक 1, 2, …, n हैं। उदाहरण के लिए:
x, y, z में सममित है। क्योंकि x, y, z की किसी भी जोड़ी को विनिमय करने पर f को अपरिवर्तित छोड़ देता है, लेकिन सभी x, y, z, t में सममित नहीं है, क्योंकि t के साथ x या y या z अंतर्विनिमय करने पर अलग कार्य देता है।
प्रकार्य संरचना
मान लीजिए कि कार्य हैं
या अधिक दृढ़तापूर्वक ξ = ξ(x), सभी एक कार्यक्षेत्र X पर परिभाषित हैं। जैसे n-टुपल x = (x1, x2, …, xn) Rn के एक उपसमुच्चय X में भिन्न होता है, m-टुपल ξ = (ξ1, ξ2, …, ξm) दूसरे क्षेत्र में Rm के एक उपसमुच्चय Ξ में भिन्न होता है। इसे पुन: स्थापित करने के लिए:
फिर, ξ(x) कार्यों के एक प्रकार्य ζ पर परिभाषित Ξ,
X पर परिभाषित एक प्रकार्य रचना है,[2] दूसरे शब्दों में मानचित्रण है
ध्यान दें कि संख्याएँ m और n को समान होने की आवश्यकता नहीं है।
उदाहरण के लिए, प्रकार्य
R2 पर हर जगह परिभाषित को शुरू करके पुनः लिखा जा सकता है
जो R3 मे हर जगह परिभाषित भी है। निम्न प्राप्त करने के लिए
प्रकार्य संरचना का उपयोग प्रकार्य को सरल बनाने के लिए किया जा सकता है, जो विविध पूर्णांकी को पूरा करने और आंशिक अवकल समीकरण को हल करने के लिए उपयोगी है।
कलन
कलन एक वास्तविक चर के वास्तविक-मूल्यवान कार्यों का कलन है, और इस तरह के कार्यों के अवकलन(गणित) और एकीकरण(गणित) के प्रमुख विचारों को एक से अधिक वास्तविक चर के कार्यों तक बढ़ाया जा सकता है; यह विस्तार बहुभिन्नरूपी कलन है।
आंशिक व्युत्पन्न
आंशिक व्युत्पन्न को प्रत्येक चर के संबंध में परिभाषित किया जा सकता है:
आंशिक व्युत्पन्न स्वयं कार्य हैं, जिनमें से प्रत्येक कार्यछेत्र में सभी बिंदुओं पर x1, x2, …, xnअक्षों में से एक के समानांतर f के परिवर्तन की दर का प्रतिनिधित्व करता है(यदि व्युत्पन्न मौजूद हैं और निरंतर हैं - नीचे भी देखें)। पहला व्युत्पन्न धनात्मक होता है यदि संबंधित अक्ष की दिशा में कार्य बढ़ता है और ऋणात्मक होता है यदि यह घटता है और शून्य होता है यदि कोई वृद्धि या कमी नहीं होती है। कार्यक्षेत्र में किसी विशेष बिंदु पर आंशिक व्युत्पन्न का मूल्यांकन उस बिंदु पर प्रकार्य के परिवर्तन की दर को एक विशेष धुरी के समानांतर दिशा में वास्तविक संख्या देता है।
वास्तविक चर के वास्तविक-मूल्यवान कार्यों के लिए, y = f(x), कार्यक्षेत्र के सभी बिंदुओं पर इसका सामान्य व्युत्पन्न dy/dx ज्यामितीय रूप से वक्र की स्पर्श रेखा की प्रवणता y = f(x) है। आंशिक व्युत्पन्न इस विचार को वक्र के स्पर्शरेखा अधिसमतल तक विस्तारित करते हैं।
दूसरे क्रम के आंशिक व्युत्पन्न की गणना चर के प्रत्येक जोड़े के लिए की जा सकती है:
ज्यामितीय रूप से, वे कार्यक्षेत्र में सभी बिंदुओं पर प्रकार्य की छवि के स्थानीय वक्रता से संबंधित होते हैं। किसी भी बिंदु पर जहां प्रकार्य अच्छी तरह से परिभाषित है, प्रकार्य कुछ अक्षों के साथ बढ़ रहा है, और/या अन्य अक्षों के साथ घट रहा है, और/या अन्य अक्षों के साथ बिल्कुल भी नहीं बढ़ रहा है या घट रहा है।
यह विभिन्न प्रकार के संभावित स्थिर बिंदुओं की ओर ले जाता है: वैश्विक या स्थानीय दीर्घतम और न्यूनतम, वैश्विक या स्थानीय दीर्घतम और न्यूनतम, और पल्याण बिन्दु - एक वास्तविक चर के वास्तविक कार्यों के लिए विभक्ति बिंदुओं का बहुआयामी समधर्मी है। हेसियन आव्यूह दूसरे क्रम के सभी आंशिक व्युत्पन्न का एक आव्यूह है, जिसका उपयोग प्रकार्य के स्थिर बिंदुओं की जांच के लिए किया जाता है, जो गणितीय अनुकूलन के लिए महत्वपूर्ण है।
सामान्य तौर पर, उच्च क्रम के आंशिक व्युत्पन्न p का स्वरुप है:
जहाँ पर p1, p2, …, pn के बीच प्रत्येक पूर्णांक 0 तथा p हैं ऐसा है कि p1 + p2 + ⋯ + pn = p पहचान संचालक के रूप में शून्य आंशिक व्युत्पन्न की परिभाषाओं का उपयोग करते हुए:
संभावित आंशिक व्युत्पन्न p की संख्या बढ़ जाती है, हालांकि कुछ मिश्रित आंशिक व्युत्पन्न(एक से अधिक चर के संबंध में) दूसरे व्युत्पन्न की समरूपता के कारण अनावश्यक हैं। यह कुछ p के लिए गणना करने के लिए आंशिक व्युत्पन्न की संख्या कम कर देता है .
बहुचर अवकलनीयता
एक प्रकार्य f(x) बिंदु a के प्रतिवैस में विभेदक है यदि सामान्य रूप से a पर निर्भर संख्याओं का n-tuple है तो A(a) = (A1(a), A2(a), …, An(a)), ताकि:[3]
जहाँ पर α → 0 के रूप में |x − a| → 0. इसका मतलब है कि यदि f एक बिंदु a पर अवकलनीय है, फिर f x = a पर निरंतर है, हालांकि इसका विलोम सत्य नहीं है - कार्यक्षेत्र में निरंतरता का मतलब कार्यक्षेत्र में भिन्नता नहीं है। यदि f पर a अवकलनीय है तब a में प्रथम कोटि के आंशिक अवकलज मौजूद होते हैं तथा:
i = 1, 2, …, n के लिये, जो विशिष्ट आंशिक व्युत्पन्न की परिभाषाओं से पाया जा सकता है, इसलिए f का आंशिक व्युत्पन्न मौजूद है।
मान लीजिए n एक आयताकार कार्तीय समन्वय प्रणाली का आयामी समधर्मी है, इन आंशिक व्युत्पन्न का उपयोग सदिश रैखिक संचालक बनाने के लिए किया जा सकता है, जिसे इस समन्वय प्रणाली में अनुप्रवण(जिसे नाबला या डेल) कहा जाता है:
सदिश कलन में बड़े पैमाने पर उपयोग किया जाता है, क्योंकि यह अन्य अंतरात्मक संचालक के निर्माण और सदिश कलन में प्रमेय तैयार करने के लिए उपयोगी है।
फिर ढाल ∇f को प्रतिस्थापित करना(x = a पर मूल्यांकन किया गया) एक मामूली पुनर्व्यवस्था के साथ देता है:
जहाँ पर · बिन्दु उत्पाद को दर्शाता है। यह समीकरण सभी बिंदुओं x पर a के प्रतिवैस के साथ प्रकार्य f के सर्वोत्तम रैखिक सन्निकटन का प्रतिनिधित्व करता है। f तथा x में x → a के रूप में अति सूक्ष्म परिवर्तन के लिए:
a पर जिसे किसी प्रकार्य f के कुल अंतर या केवल अंतर के रूप में परिभाषित किया जाता है। यह व्यंजक f के कुल अत्यल्प परिवर्तन के संगत है, f के सभी अपरिमेय परिवर्तनों को सभी xi दिशाओं में जोड़कर मेल खाती है। साथ ही, df को प्रत्येक दिशा में अति सूक्ष्म dxi के रूप में और घटक के रूप में f के आंशिक व्युत्पादित के रूप में आधार सदिश के साथ एक सहसदिश के रूप में समझा जा सकता है।
ज्यामितीय ∇f f के स्तर समुच्चय के लंबवत है, जो कुछ स्थिर c के लिए एक (n − 1)-विमीय अतिसतह का वर्णन करता है वह f(x) = c द्वारा दिया गया है। एक स्थिरांक का अंतर शून्य है:
जिसमें dx हाइपरसफेस f(x) = c में x में एक अतिसूक्ष्म परिवर्तन है, और क्योंकि बिन्दु उत्पाद ∇f तथा dx शून्य है, इसका अर्थ है ∇f dx के लंबवत है।
n आयाम में स्वेच्छाचारी वक्रीय समन्वय प्रणालियों में, ढाल के लिए स्पष्ट अभिव्यक्ति इतनी सरल नहीं होगी - उस समन्वय प्रणाली के लिए मापीय प्रदिश के संदर्भ में मापक्रम कारक होंगे। इस पूरे लेख में उपयोग किए गए उपरोक्त मामले के लिए, मापीय केवल क्रोनकर डेल्टा है और मापक्रम कारक सभी 1 हैं।
भिन्नता वर्ग
यदि सभी प्रथम क्रम आंशिक व्युत्पन्न का मूल्यांकन कार्यक्षेत्र में एक बिंदु a पर किया जाता है:
मौजूद हैं और कार्यक्षेत्र में सभी a के लिए निरंतर हैं, f में अवकलनीयता वर्ग C1 है। सामान्यतः, यदि सभी आदेश p आंशिक व्युत्पन्न का मूल्यांकन एक बिंदु a पर किया जाता है :
मौजूद हैं और निरंतर हैं, जहां p1, p2, …, pn, तथा p ऊपर जैसे दिए गए हैं उस ही के रूप में, कार्यक्षेत्र a में सभी के लिए हैं, फिर f अनुक्रम पूरे कार्यक्षेत्र में p से अवलकनीय है और अवकलनीयता वर्ग C p है .
यदि f अवकलनीयता वर्ग C∞ का है , f सभी क्रम के निरंतर आंशिक व्युत्पन्न हैं और इसे सुचारू कार्य कहा जाता है। यदि f एक विश्लेषणात्मक कार्य है और कार्यक्षेत्र में कोई भी बिंदु इसकी टेलरश्रेणी के बराबर है, अंकन Cω इस अवकलनीयता वर्ग को दर्शाता है।
विविध एकीकरण
चिन्हांकन के साथ कई वास्तविक चर पर निश्चित अभिन्न को कई एकीकरण तक बढ़ाया जा सकता है;
जहां प्रत्येक क्षेत्र R1, R2, …, Rn वास्तविक रेखा का या सभी का उपसमुच्चय है:
और उनका कार्तीय उत्पाद क्षेत्र को एक समुच्चय के रूप में एकीकृत करने के लिए देता है:
एक n-आयामी अतिमात्रा। जब मूल्यांकन किया जाता है, तो एक निश्चित अभिन्न एक वास्तविक संख्या होती है यदि अभिन्न एकीकरण के क्षेत्र R में अभिसरण करता है(एक निश्चित अभिन्न का परिणाम किसी दिए गए क्षेत्र के लिए अनंत हो सकता है, ऐसे मामलों में अभिन्न अपरिभाषित रहता है)।चर को प्रतिरूप या मुक्त चर और बाध्य चर के रूप में माना जाता है बाध्य चर जो एकीकरण की प्रक्रिया में संख्याओं के लिए प्रतिस्थापित किए जाते हैं।
x के संबंध में एक वास्तविक चर y = f(x) के वास्तविक-मूल्यवान प्रकार्य का अभिन्न ज्यामितीय व्याख्या है क्योंकि वक्र y = f(x) और x-अक्ष से घिरा क्षेत्र है। एकाधिक समाकल इस अवधारणा की विमीयता का विस्तार करते हैं: एक आयताकार कार्तीय समन्वय प्रणाली के n-आयामी रेखीय को मानते हुए, उपरोक्त निश्चित पूर्णांकी की ज्यामितीय व्याख्या f(x) और x1, x2, …, xn अक्षों द्वारा बंधे n- विमीय अतिमात्रा के रूप में है, जो कि प्रकार्य के एकीकृत होने के आधार पर सकारात्मक, नकारात्मक या शून्य हो सकता है(यदि अभिन्न अभिसरण है)।।
जबकि परिबद्ध अतिमात्रा एक उपयोगी अंतर्दृष्टि है, निश्चित अभिन्न का अधिक महत्वपूर्ण विचार यह है कि वे अंतरिक्ष के भीतर कुल मात्रा का प्रतिनिधित्व करते हैं। अनुप्रयुक्त गणित और भौतिकी में इसका महत्व है: यदि f कुछ अदिश घनत्व क्षेत्र है और x स्थिति सदिश निर्देशांक हैं, यानी कुछ अदिश(भौतिकी) प्रति इकाई n-विमीय अतिमात्रा, फिर क्षेत्र R में एकीकृत करने से R में कुल मात्रा प्राप्त होती है। अतिमात्रा की अधिक औपचारिक धारणा माप(गणित) का विषय है। ऊपर हमने लेबेस्ग माप का उपयोग किया, इस विषय पर अधिक जानकारी के लिए लेबेस्ग एकीकरण देखें।
प्रमेय
एकाधिक एकीकरण और आंशिक व्युत्पन्न की परिभाषाओं के साथ, प्रमुख प्रमेय तैयार किए जा सकते हैं, जिसमें कई वास्तविक चर(अर्थात् स्टोक्स प्रमेय) में कलन के मौलिक प्रमेय अंतर्ग्रस्त हैं, कई वास्तविक चर में उच्च आयाम भागों द्वारा एकीकरण, दूसरे व्युत्पन्न की समरूपता और बहुभिन्नरूपी कार्यों के लिए टेलर की प्रमेय। पूर्णांकी और आंशिक व्युत्पन्न के मिश्रण का मूल्यांकन पूर्णांकी चिन्ह के तहत प्रमेय भिन्नता का उपयोग करके किया जा सकता है।
सदिश कलन
कई वास्तविक चरों में से प्रत्येक में कई कार्य एकत्र किए जा सकते हैं, कहते हैं
एक में m-टुपल, या कभी-कभी स्तंभ सदिश या पंक्ति सदिश के रूप में क्रमशः:
सभी को एक समान m-घटक सदिश आधार स्तर पर माना जाता है, और जो भी रूप सुविधाजनक हो उसका उपयोग करें। उपरोक्त सभी संकेतन में एक सामान्य सघन संकेतन y = f(x) है। ऐसे सदिश क्षेत्रों की गणना सदिश कलन है। बहुभिन्नरूपी कार्यों के पंक्ति सदिशों और स्तंभ सदिशों के उपचार के बारे में अधिक जानकारी के लिए, आव्यूह कलन देखें।
अंतर्निहित कार्य
कई वास्तविक चरों का वास्तविक-मूल्यवान अंतर्निहित कार्य y = f(…) रूप में नहीं लिखा गया है। इसके स्थान पर, प्रतिचित्रण स्थल Rn + 1 से R में शून्य तत्व तक है(केवल सामान्य शून्य 0):
सभी चरों में एक समीकरण है। अंतर्निहित कार्य कार्यों का प्रतिनिधित्व करने का एक अधिक सामान्य तरीका है, क्योंकि यदि:
तो हम हमेशा परिभाषित कर सकते हैं:
लेकिन इसका विलोम हमेशा संभव नहीं होता है, अर्थात सभी अंतर्निहित कार्यों का एक स्पष्ट रूप नहीं होता है।
उदाहरण के लिए, अंतराल(गणित) का उपयोग करते हुए, आइए
एक 3-आयामी(3D) कार्तीय समन्वय प्रणाली का चयन करना, यह प्रकार्य मूल पर स्थिर (x, y, z) = (0, 0, 0) अर्ध-प्रमुख अक्षों a, b, c, धनात्मक x, y और z पर क्रमशः केंद्रित एक 3D दीर्घवृत्त की सतह का वर्णन करता है। a = b = c = r प्रकार्य में, हमारे पास मूल बिंदु पर केंद्रित त्रिज्या r का एक गोला है। अन्य शांकव खंड के उदाहरण जिन्हें समान रूप से वर्णित किया जा सकता है उनमें अतिपरवलयज और परवलयज सम्मिलित हैं, सामान्यतः 3D यूक्लिडीय स्थल में कोई भी 2D सतह हो सकती है। उपरोक्त उदाहरण के लिए x, y या z हल किया जा सकता है; हालाँकि इसे निहित रूप में लिखना बहुत कठिन है।
अधिक परिष्कृत उदाहरण के लिए:
गैर-शून्य वास्तविक स्थिरांक A, B, C, ω के लिए , यह प्रकार्य सभी (t, x, y, z) के लिए अच्छी तरह से परिभाषित है, लेकिन इसे इन चरों के लिए स्पष्ट रूप से हल नहीं किया जा सकता है और इसे "t =", "x =" आदि लिखा जा सकता है।
दो से अधिक वास्तविक चरों का निहित फलन प्रमेय, फलन की निरंतरता और अवकलनीयता से संबंधित है, जो इस प्रकार है।[4] मान लीजिये ϕ(x1, x2, …, xn) निरंतर प्रथम क्रम आंशिक व्युत्पन्न के साथ एक निरंतर कार्य हो, और ϕ को एक बिंदु (a, b) = (a1, a2, …, an, b) पर शून्य होने दें:
और ϕ का पहला आंशिक व्युत्पन्न y के संबंध में (a, b) पर मूल्यांकन किया गया गैर शून्य हो:
फिर एक b युक्त अंतराल [y1, y2] होता है, और एक क्षेत्र R (a, b) युक्त, ऐसे कि R में प्रत्येक x के लिए y का [y1, y2] में संतुष्टि देने वाला ϕ(x, y) = 0 ठीक एक मूल्य है, तथा y x का एक सतत कार्य है ताकि ϕ(x, y(x)) = 0 हो। कार्यों के कुल अंतर हैं:
स्थानापन्न dy बाद के अंतर में और अंतर के गुणांक को बराबर करने से पहले क्रम का आंशिक व्युत्पन्न y मिलता है। इसके संबंध में xi मूल फलन के अवकलजों के संदर्भ में, प्रत्येक रैखिक समीकरण के हल के रूप में
के लिये i = 1, 2, …, n.
कई वास्तविक चरों का जटिल-मूल्यवान कार्य
कई वास्तविक चरों के एक जटिल-मूल्यवान प्रकार्य को वास्तविक-मूल्यवान कार्यों की परिभाषा में, सहकार्यक्षेत्र को वास्तविक संख्याओं तक सीमित करने और जटिल संख्या मानों की अनुमति देकर परिभाषित किया जा सकता है।
यदि f(x1, …, xn) इस तरह का एक जटिल मूल्यवान कार्य है, इसे विघटित किया जा सकता है।
जहाँ पर g तथा h वास्तविक मूल्यवान कार्य हैं। दूसरे शब्दों में, जटिल मूल्यवान कार्यों का अध्ययन वास्तविक मूल्यवान कार्यों के जोड़े के अध्ययन के लिए आसानी से कम हो जाता है।
यह कमी सामान्य विशेषता के लिए काम करती है। हालाँकि, स्पष्ट रूप से दिए गए प्रकार्य के लिए, जैसे:
वास्तविक और काल्पनिक भाग की गणना कठिन हो सकती है।
अनुप्रयोग
अभियांत्रिकी और भौतिकी में वास्तविक चरों के बहुभिन्नरूपी कार्य अनिवार्य रूप से उत्पन्न होते हैं, क्योंकि अवलोकन योग्य भौतिक मात्रा वास्तविक संख्याएं होती हैं(माप और आयामी विश्लेषण की संबंधित इकाइयों के साथ), और कोई भी भौतिक मात्रा सामान्यतः कई अन्य मात्राओं पर निर्भर करती है।
कई वास्तविक चरों के वास्तविक-मूल्यवान कार्यों के उदाहरण
सातत्य यांत्रिकी के उदाहरणों में बड़े पैमाने पर वितरण का स्थानीय द्रव्यमान घनत्व ρ उपस्तिथ है, एक अदिश क्षेत्र जो स्थानिक स्थिति निर्देशांक पर निर्भर करता है(यहाँ उदाहरण के लिए कार्तीय), r = (x, y, z), और समय t:
इसी तरह विद्युत् आवेश वस्तुओं के लिए विद्युत् आवेश घनत्व, और कई अन्य अदिश संभावित क्षेत्रों के लिए है।
एक अन्य उदाहरण वेग क्षेत्र है, एक सदिश क्षेत्र, जिसमें वेग के घटक v = (vx, vy, vz) होते हैं स्थानिक निर्देशांक और समय के प्रत्येक बहुभिन्नरूपी कार्य इस तरह हैं:
इसी प्रकार अन्य भौतिक सदिश क्षेत्रों जैसे विद्युत क्षेत्र और चुंबकीय क्षेत्र, और सदिश संभावित क्षेत्र के लिए।
एक अन्य महत्वपूर्ण उदाहरण ऊष्मप्रवैगिकी में अवस्था समीकरण है, दबाव से संबंधित एक समीकरण P, तापमान T, और एक तरल पदार्थ की मात्रा V, सामान्यतः इसका एक अंतर्निहित रूप होता है:
सबसे सरल उदाहरण आदर्श गैस कानून है:
जहाँ पर n मोल्स की संख्या है, पदार्थ की एक निश्चित मात्रा के लिए स्थिर, और R गैस स्थिरांक। स्तिथि के बहुत अधिक जटिल समीकरणों को आनुभविक रूप से व्युत्पन्न किया गया है, लेकिन उन सभी का उपरोक्त निहित रूप है।
कई वास्तविक चरों के वास्तविक-मूल्यवान कार्य अर्थशास्त्र में व्यापक रूप से दिखाई देते हैं। उपभोक्ता सिद्धांत के आधार में, उपयोगिता को खपत किए गए विभिन्न सामानों की मात्रा के एक प्रकार्य के रूप में व्यक्त किया जाता है, प्रत्येक मात्रा उपयोगिता प्रकार्य का एक तर्क है। उपयोगिता को अधिकतम करने का परिणाम मांग कार्यों का एक समुच्चय है, प्रत्येक एक विशेष वस्तु की मांग की गई राशि को विभिन्न वस्तुओं की कीमतों और आय या धन के कार्य के रूप में व्यक्त करता है। आपूर्ति(अर्थशास्त्र) सिद्धांत में, एक व्यवसाय संघ को सामान्यतः उत्पादित विभिन्न वस्तुओं की मात्रा और नियोजित उत्पादन के विभिन्न कारकों की मात्रा के कार्य के रूप में लाभ को अधिकतम करने के लिए माना जाता है। अनुकूलन का परिणाम उत्पादन के विभिन्न कारकों के लिए मांग कार्यों का एक समुच्चय और विभिन्न उत्पादों के लिए आपूर्ति(अर्थशास्त्र) का एक समुच्चय है; इनमें से प्रत्येक कार्य के अपने तर्क के रूप में वस्तुओं की कीमतें और उत्पादन के कारक हैं।
कई वास्तविक चरों के जटिल-मूल्यवान कार्यों के उदाहरण
कुछ भौतिक मात्राएँ वास्तव में जटिल मूल्य हो सकती हैं - जैसे कि जटिल प्रतिबाधा, जटिल पारगम्यता, पारगम्यता(विद्युत चुंबकत्व), और अपवर्तक सूचकांक। ये वास्तविक चरों के कार्य भी हैं, जैसे आवृत्ति या समय, साथ ही साथ तापमान।
द्वि-आयामी द्रव यांत्रिकी में, विशेष रूप से संभावित प्रवाह के सिद्धांत में द्वि-आयामी 2d में द्रव गति का वर्णन करने के लिए उपयोग किए जाते हैं, सम्मिश्र विभव
दो स्थानिक निर्देशांकों का एक जटिल मूल्यवान कार्य x तथा y और प्रणाली से जुड़े अन्य वास्तविक चर है। वास्तविक भाग वेग क्षमता है और काल्पनिक भाग धारा कार्य है।
लाप्लास समीकरण के समाधान के रूप में भौतिकी और अभियान्त्रिकी में गोलाकार गुणवृत्ति होते हैं, साथ ही z-घटक कोणीय गति संचालक के अतिलक्षणिक प्रकार्य जो वास्तविक-मूल्यवान गोलाकार ध्रुवीय निर्देशांक के जटिल-मूल्यवान कार्य हैं:
परिमाण यांत्रिकी में, वेवप्रकार्य आवश्यक रूप से जटिल-मूल्यवान है, लेकिन वास्तविक स्थानिक निर्देशांक(या संवेग घटकों) का एक कार्य है, साथ ही समय t भी :
जहां प्रत्येक फूरियर रूपांतरण से संबंधित है।
यह भी देखें
- वास्तविक समन्वय स्थान # कई चर के एक प्रकार्य का कार्यक्षेत्र
- वास्तविक विश्लेषण
- जटिल विश्लेषण
- कई जटिल चर का कार्य
- अदिश क्षेत्र
इस पेज में लापता आंतरिक लिंक की सूची
संदर्भ
- ↑ R. Courant. डिफरेंशियल और इंटीग्रल कैलकुलस. Vol. 2. Wiley Classics Library. pp. 46–47. ISBN 0-471-60840-8.
- ↑ R. Courant. डिफरेंशियल और इंटीग्रल कैलकुलस. Vol. 2. Wiley Classics Library. p. 70. ISBN 0-471-60840-8.
- ↑ W. Fulks (1978). उन्नत कलन. John Wiley & Sons. pp. 300–302. ISBN 0-471-02195-4.
- ↑ R. Courant. डिफरेंशियल और इंटीग्रल कैलकुलस. Vol. 2. Wiley Classics Library. pp. 117–118. ISBN 0-471-60840-8.
- F. Ayres, E. Mendelson (2009). Calculus. Schaum's outline series (5th ed.). McGraw Hill. ISBN 978-0-07-150861-2.
- R. Wrede, M. R. Spiegel (2010). Advanced calculus. Schaum's outline series (3rd ed.). McGraw Hill. ISBN 978-0-07-162366-7.
- W. F. Hughes, J. A. Brighton (1999). Fluid Dynamics. Schaum's outline series (3rd ed.). McGraw Hill. p. 160. ISBN 978-0-07-031118-3.
- R. Penrose (2005). The Road to Reality. Vintage books. ISBN 978-00994-40680.
- S. Dineen (2001). Multivariate Calculus and Geometry. Springer Undergraduate Mathematics Series (2 ed.). Springer. ISBN 185-233-472-X.
- N. Bourbaki (2004). Functions of a Real Variable: Elementary Theory. Springer. ISBN 354-065-340-6.
- M. A. Moskowitz, F. Paliogiannis (2011). Functions of Several Real Variables. World Scientific. ISBN 978-981-429-927-5.
- W. Fleming (1977). Functions of Several Variables. Undergraduate Texts in Mathematics (2nd ed.). Springer. ISBN 0-387-902-066.