समांतर चतुर्भुज नियम

From Vigyanwiki
Revision as of 22:55, 26 December 2022 by alpha>Samikshas (कानून को कहा जा सकता है।)
एक समांतर चतुर्भुज। पक्षों को नीले रंग में और विकर्णों को लाल रंग में दिखाया गया है।

गणित में, समानांतर चतुर्भुज विधि (जिसे समानांतर-ग्राम पहचान भी कहा जाता है) का सरलतम रूप प्राथमिक ज्यामिति से संबंधित है। इसमें कहा गया है कि एक समांतर चतुर्भुज की चारों भुजाओं की लंबाई के वर्गों का योग दो विकर्णों की लंबाई के वर्गों के योग के बराबर होता है। हम इन अंकन का उपयोग पक्षों के लिए करते हैं: AB, BC, CD, DA। लेकिन चूंकि यूक्लिडियन ज्यामिति में एक समानांतर व्याकरण आवश्यक रूप से विपरीत पक्षों के बराबर है, AB = CD और BC = DA, कानून को कहा जा सकता है।

यदि समांतर चतुर्भुज एक आयत है, तो दो विकर्ण बराबर लंबाई के होते हैं AC = BD, इसलिए
और बयान पायथागॉरियन प्रमेय को कम करता है। चार भुजाओं वाले सामान्य चतुर्भुज के लिए जरूरी नहीं कि समान हों,
कहाँ पे विकर्णों के मध्यबिंदुओं को मिलाने वाले रेखाखंड की लंबाई है। आरेख से देखा जा सकता है कि समांतर चतुर्भुज के लिए, और इसलिए सामान्य सूत्र समांतर चतुर्भुज कानून को सरल करता है।

प्रमाण

Color parallelogram.svg

दाईं ओर समांतर चतुर्भुज में, AD = BC = a, AB = DC = b, त्रिभुज में कोसाइन के नियम का उपयोग करके हम पाते हैं:

समांतर चतुर्भुज में, आसन्न कोण पूरक कोण होते हैं, इसलिए त्रिभुज में कोसाइन के नियम का उपयोग करना पैदा करता है:
त्रिकोणमितीय सर्वसमिकाओं की सूची को लागू करके पूर्व परिणाम साबित करता है:
अब वर्गों का योग के रूप में व्यक्त किया जा सकता है:
इस अभिव्यक्ति को सरल बनाना, यह बन जाता है:


आंतरिक उत्पाद रिक्त स्थान में समानांतर चतुर्भुज कानून

समांतर चतुर्भुज कानून में शामिल वैक्टर।

एक आदर्श स्थान में, समांतर चतुर्भुज कानून का कथन मानदंड (गणित) से संबंधित एक समीकरण है:

समांतरोग्राम कानून प्रतीत होता है कमजोर बयान के बराबर है:
क्योंकि इससे उलटी असमानता को प्रतिस्थापित करके प्राप्त किया जा सकता है के लिये तथा के लिये और फिर सरलीकरण। उसी प्रमाण के साथ, समांतर चतुर्भुज कानून भी इसके बराबर है:

एक आंतरिक उत्पाद स्थान में, आंतरिक उत्पाद # परिभाषा का उपयोग करके मानदंड निर्धारित किया जाता है:

इस परिभाषा के परिणामस्वरूप, एक आंतरिक उत्पाद स्थान में समांतर चतुर्भुज कानून एक बीजगणितीय पहचान है, जो आंतरिक उत्पाद के गुणों का उपयोग करके आसानी से स्थापित होता है:
इन दो भावों को जोड़ना:
जैसी ज़रूरत।

यदि इसके लिए ओर्थोगोनल है अर्थ और राशि के मानदंड के लिए उपरोक्त समीकरण बन जाता है:

जो पाइथागोरस प्रमेय है।

समानांतर चतुर्भुज नियम को संतुष्ट करने वाले नॉर्म्ड वेक्टर स्पेस

अधिकांश वास्तविक संख्या और जटिल संख्या मानक वेक्टर रिक्त स्थान में आंतरिक उत्पाद नहीं होते हैं, लेकिन सभी मानक वेक्टर रिक्त स्थान में मानदंड (परिभाषा के अनुसार) होते हैं। उदाहरण के लिए, वेक्टर के लिए आमतौर पर इस्तेमाल किया जाने वाला मानदंड वास्तविक समन्वय स्थान में पी-नॉर्म है|-आदर्श:

मानदण्ड दिए जाने पर, उपरोक्त समांतर चतुर्भुज नियम के दोनों पक्षों का मूल्यांकन किया जा सकता है। एक उल्लेखनीय तथ्य यह है कि यदि समांतर चतुर्भुज कानून लागू होता है, तो किसी आंतरिक उत्पाद से सामान्य तरीके से मानदंड उत्पन्न होना चाहिए। विशेष रूप से, के लिए रखती है -नॉर्म अगर और केवल अगर तथाकथित Euclidean मानदंड या standard मानदंड।[1][2] समांतर चतुर्भुज कानून (जो आवश्यक रूप से एक आंतरिक उत्पाद मानदंड है) को संतुष्ट करने वाले किसी भी मानक के लिए, ध्रुवीकरण पहचान के परिणाम के रूप में आदर्श उत्पन्न करने वाला आंतरिक उत्पाद अद्वितीय है। वास्तविक मामले में, ध्रुवीकरण की पहचान निम्न द्वारा दी गई है:
या समकक्ष द्वारा
जटिल मामले में यह इसके द्वारा दिया जाता है:
उदाहरण के लिए, का उपयोग करना -नॉर्म के साथ और वास्तविक वैक्टर तथा आंतरिक उत्पाद आय का मूल्यांकन इस प्रकार है:
जो दो सदिशों का मानक बिंदु गुणनफल है।

एक आंतरिक उत्पाद मौजूद होने के लिए एक और आवश्यक और पर्याप्त स्थिति जो दिए गए मानदंड को प्रेरित करती है टॉलेमी की असमानता को संतुष्ट करने के लिए मानदंड है:[3]


यह भी देखें


संदर्भ

  1. Cantrell, Cyrus D. (2000). भौतिकविदों और इंजीनियरों के लिए आधुनिक गणितीय तरीके. Cambridge University Press. p. 535. ISBN 0-521-59827-3. अगर p ≠ 2, कोई आंतरिक उत्पाद नहीं है जैसे कि because the p-norm violates the parallelogram law. {{cite book}}: no-break space character in |quote= at position 10 (help)
  2. Saxe, Karen (2002). कार्यात्मक विश्लेषण की शुरुआत. Springer. p. 10. ISBN 0-387-95224-1.
  3. Apostol, Tom M. (1967). "टॉलेमी की असमानता और कॉर्डल मेट्रिक". Mathematics Magazine (in English). 40 (5): 233–235. doi:10.2307/2688275. JSTOR 2688275.


इस पेज में लापता आंतरिक लिंक की सूची

  • समानांतर चतुर्भुज
  • अंक शास्त्र
  • पाइथागोरस प्रमेय
  • चतुष्कोष
  • रेखा खंड
  • कोसाइन का कानून
  • नॉर्म्ड स्पेस
  • सामान्य (गणित)
  • डॉट उत्पाद

बाहरी संबंध