प्रसंवादी फलन

From Vigyanwiki
Revision as of 01:08, 6 January 2023 by alpha>Jyotimehta (text)
एनुलस (गणित) पर परिभाषित एक प्रसंवादी फलन।

गणित में,गणितीय भौतिकी और प्रसंभाव्य प्रक्रियाओं के सिद्धांत में, एक प्रसंवादी फलन एक दो बार लगातार भिन्न होने वाला फलन (गणित) है। जहाँ U का खुला उपसमुच्चय है जो लाप्लास के समीकरण को संतुष्ट करता है, अर्थात,

U पर हर जगह। यह आमतौर पर निम्न लिखा जाता है

या


प्रसंवादी शब्द की व्युत्पत्ति

प्रसंवादी फलन नाम में निरुपक प्रसंवादी एक तनावयुक्त तंतु पर एक बिंदु से उत्पन्न होता है जो सरल प्रसंवादी गति से गुजर रहा है। इस प्रकार की गति के लिए अवकल समीकरण का हल द्विज्या और कोटिज्या के रूप में लिखा जा सकता है, ऐसे फलन जिन्हें प्रसंवादी कहा जाता है। फूरियर विश्लेषण में इन प्रसंवादी की एक श्रृंखला के संदर्भ में एकांक वृत्त पर कार्यों का विस्तार करना सम्मिलित है। इकाई n-वृत्त पर प्रसंवादी के उच्च आयामी सादृश्य को ध्यान में रखते हुए, एक गोलाकार प्रसंवादी पर आता है। ये फलन लाप्लास के समीकरण को संतुष्ट करते हैं और समय के साथ प्रसंवादी फलन लाप्लास के समीकरण को संतुष्ट करते हैं।[1]


उदाहरण

दो चरों के प्रसंवादी फलन के उदाहरण हैं:

  • किसी भी पूर्णसममितिक फलन के वास्तविक और काल्पनिक भाग।
  • प्रकार्य यह उपरोक्त उदाहरण का एक विशेष मामला है, जैसे और एक पूर्णसममितिक फलन है।
  • प्रकार्य पर परिभाषित । यह एक रेखा आवेश के कारण विद्युत क्षमता या लंबे बेलनाकार द्रव्यमान के कारण गुरुत्वाकर्षण क्षमता का वर्णन कर सकता है।

नीचे दी गई तालिका में के साथ तीन चर के प्रसंवादी कार्यों के उदाहरण दिए गए हैं:

फलन विशिष्टता
मूल बिंदु पर इकाई बिंदु प्रभार
x-निर्देशित द्विध्रुवीय मूल में
संपूर्ण z-अक्ष पर इकाई आवेश घनत्व की रेखा
ऋणात्मक z-अक्ष पर इकाई आवेश घनत्व की रेखा
संपूर्ण z अक्ष पर x-निर्देशित द्विध्रुवों की रेखा
ऋणात्मक z अक्ष पर x-निर्देशित द्विध्रुवों की रेखा

भौतिकी में उत्पन्न होने वाले प्रसंवादी फलन उनकीगणितीय विलक्षणता और सीमा स्थितियों (जैसे डिरिचलेट सीमा स्थिति या न्यूमैन सीमा स्थिति) द्वारा निर्धारित किए जाते हैं। सीमाओं के बिना क्षेत्रों पर, किसी भी संपूर्ण कार्य के वास्तविक या काल्पनिक भाग को जोड़ने से समान विलक्षणता के साथ एक प्रसंवादी फलन उत्पन्न होगा, इसलिए इस मामले में प्रसंवादी फलन इसकी विलक्षणता से निर्धारित नहीं होता है; हालाँकि, हम भौतिक स्थितियों में समाधान को अद्वितीय बना सकते हैं, यह आवश्यक है कि समाधान 0 तक पहुँचता है क्योंकि r अनंत तक पहुँचता है। इस मामले में, विशिष्टता लिउविल के प्रमेय द्वारा अनुसरण करती है।

उपरोक्त प्रसंवादी कार्यों के एकल बिंदुओं को स्थिर विद्युतिकी की शब्दावली का उपयोग करके आवेश (भौतिकी) और आवेश घनत्व के रूप में व्यक्त किया जाता है, और इसलिए संबंधित प्रसंवादी फलन इन आवेश वितरणों के कारण विद्युत क्षमता के समानुपाती होगा। उपरोक्त प्रत्येक फलन एक स्थिर, घुमाए गए, और/या निरंतर जोड़े जाने पर गुणा किए जाने पर एक और प्रसंवादी फलन उत्पन्न करेगा। प्रत्येक फलन के व्युत्क्रम की विधि से एक और प्रसंवादी फलन निकलेगा जिसमें विलक्षणताएं हैं जो एक गोलाकार दर्पण में मूल विलक्षणताओं की छवियां हैं। साथ ही, किसी भी दो प्रसंवादी कार्यों का योग एक और प्रसंवादी फलन उत्पन्न करेगा।

अंत में, प्रसंवादी कार्यों के उदाहरण n चर हैं:

  • सभी पर स्थिर, रैखिक और सजातीय कार्य करता है (उदाहरण के लिए, संधारित्र की पट्टिका के बीच विद्युत क्षमता और खंड की गुरुत्वाकर्षण क्षमता )
  • n > 2 के लिए पर प्रकार्य

गुण

किसी दिए गए खुले सम्मुच्चय पर प्रसंवादी फलक का सम्मुच्चय U लाप्लास संचालक Δ के कर्नेल (रैखिक संचालक) के रूप में देखा जा सकता है और इसलिए पर एक सदिश स्थल है, प्रसंवादी कार्यों के रैखिक संयोजन फिर से प्रसंवादी होते हैं।

यदि f पर एक प्रसंवादी फलन U है, तो f के सभी आंशिक व्युत्पादित पर भी प्रसंवादी कार्य U हैं। लाप्लास संचालक Δ और आंशिक व्युत्पादित संचालक इस वर्ग के कार्यों पर काम करेगा।

कई मायनों में, प्रसंवादी फलन पूर्णसममितिक फलक के वास्तविक अनुरूप हैं। सभी प्रसंवादी कार्यविश्लेषणात्मक कार्य हैं, अर्थात, उन्हें स्थानीय रूप से घात श्रृंखला के रूप में व्यक्त किया जा सकता है। यह दीर्घवृत्तीय संचालक के बारे में एक सामान्य तथ्य है, जिनमें से लाप्लासियन एक प्रमुख उदाहरण है।

प्रसंवादी कार्यों के अभिसरण अनुक्रम की समान सीमा अभी भी प्रसंवादी है। यह सच है क्योंकि औसत मूल्य संपत्ति को संतुष्ट करने वाला प्रत्येक निरंतर कार्य प्रसंवादी है। द्वारा परिभाषित क्रम पर विचार करें। यह अनुक्रम प्रसंवादी है और समान रूप से शून्य फलन में परिवर्तित होता है; हालांकि ध्यान दें कि आंशिक व्युत्पादित समान रूप से शून्य फलन (शून्य फलन के व्युत्पन्न) के अभिसरण नहीं होते हैं। यह उदाहरण औसत मूल्य संपत्ति पर भरोसा करने और यह तर्क देने के लिए निरंतरता दिखाता है कि सीमा प्रसंवादी है।

जटिल कार्य सिद्धांत के साथ संबंध

किसी भी पूर्णसममितिक फलन का वास्तविक और काल्पनिक हिस्सा प्रसंवादी फलन उत्पन्न करता है (इन्हें प्रसंवादी संयुग्म कार्यों की एक जोड़ी कहा जाता है)। इसके विपरीत, कोई प्रसंवादी फलन u एक के खुले उपसमुच्चय Ω पर स्थानीय रूप से एक पूर्णसममितिक फलन का वास्तविक हिस्सा है। यह देखते हुए तुरंत देखा जाता है कि, लिखना जटिल कार्य में पूर्णसममितिक Ω है क्योंकि यह कॉची-रीमैन समीकरणों को संतुष्ट करता है। इसलिए, g स्थानीय रूप से एक आदिम f है , और u का वास्तविक भाग एक स्थिरांक तक f है, जैसे ux का वास्तविक भाग है।

यद्यपि पूर्णसममितिक कार्यों के साथ उपरोक्त पत्राचार केवल दो वास्तविक चर, प्रसंवादी फलक के कार्यों के लिए है, n चर अभी भी पूर्णसममितिक कार्यों के विशिष्ट गुणों का आनंद लेते हैं। वे (वास्तविक) विश्लेषणात्मक हैं; उनके पास अधिकतम सिद्धांत और औसत मूल्य सिद्धांत है; विलक्षणताओं को हटाने का एक प्रमेय और साथ ही एक लिउविल प्रमेय उनके लिए जटिल कार्य सिद्धांत में संबंधित प्रमेयों के अनुरूप है।

प्रसंवादी कार्यों के गुण

लाप्लास के समीकरण से प्रसंवादी कार्यों के कुछ महत्वपूर्ण गुण निकाले जा सकते हैं।

प्रसंवादी कार्यों के लिए नियमितता प्रमेय

खुले सम्मुच्चय में प्रसंवादी फलन असीम रूप से भिन्न होते हैं। वास्तव में, प्रसंवादी कार्य विश्लेषणात्मक कार्य हैं।

अधिकतम सिद्धांत

प्रसंवादी फलन निम्नलिखित अधिकतम मापांक सिद्धांत को संतुष्ट करते हैं: यदि K का एक गैर-खाली संक्षिप्त जगह U है, तब f के लिए प्रतिबंधित K की सीमा (सांस्थिति) पर अपनी अधिकतम और निम्नतम प्राप्त करता है। यदि U आनुषंगिक है, इसका मतलब है कि जहाँ f स्थिर है उन असाधारण मामलों के अलावा f स्थानीय दीर्घतम या न्यूनतम नहीं हो सकता है। अवसंनादी कार्यों के लिए समान गुण दिखाए जा सकते हैं।

औसत मूल्य संपत्ति

यदि B(x, r) केंद्र x वाली एक गेंद (गणित) है और त्रिज्या r जो पूरी तरह से खुले सम्मुच्चय में समाहित है तो गेंद के केंद्र में प्रसंवादी फलक का मान u(x) द्वारा गेंद की सतह पर u का औसत मूल्य दिया जाता है; यह औसत मान भी गेंद के आंतरिक भाग में u के औसत मान के बराबर है। दूसरे शब्दों में,

जहाँ ωn ईकाई बॉल का आयतन n आयाम है और σ (n − 1)-आयामी सतह माप है।

इसके विपरीत, सभी स्थानीय रूप से पूर्णांकित कार्य (मात्रा) माध्य-मूल्य विशेशता को संतुष्ट करते हैं, दोनों असीम रूप से भिन्न और प्रसंवादी हैं।

संकल्पों के संदर्भ में, यदि

मूल के बारे में त्रिज्या r के साथ गेंद के विशिष्ट कार्य को दर्शाता है, सामान्यीकृत ताकि प्रकार्य u Ω पर सुसंगत है यदि और केवल यदि

जैसे ही

प्रमाण का रेखाचित्र। प्रसंवादी कार्यों की औसत-मूल्य संपत्ति का प्रमाण और इसका विलोम तुरंत किसी के लिए गैर-सजातीय समीकरण 0 < s < r को देखते हुए अनुसरण करता है

B(0, r) में संक्षिप्त समर्थन के साथ कक्षा C1,1 के एक आसान स्पष्ट समाधान wr,s को स्वीकार करता है। इस प्रकार, यदि u Ω में सुसंगत है। इस प्रकार, यदि में प्रसंवादी है

सम्मुच्चय Ωr सभी बिंदुओं x में Ω साथ में

तब से u में Ω निरंतर है, में u विलीन हो जाता है जैसे s → 0 के लिए Ω में u औसत मूल्य संपत्ति दिखा रहा है। इसके विपरीत u क्या किसी में माध्य-मूल्य गुण को संतुष्ट करने वाला फलन Ω है, वह है,

Ωr में सबके लिए 0 < s < r रखता है फिर, पुनरावृति m के साथ कनवल्शन का गुना χr किसी के पास:

ताकि u है क्यों कि m-गुना पुनरावृत्त कनवल्शन χr श्रेणी का है समर्थन के साथ B(0, mr). तब से r और m मनमाना हैं, u है भी। इसके अतिरिक्त,

सबके लिए 0 < s < r ताकि Δu = 0 में Ω भिन्नताओं की कलन के मौलिक प्रमेय द्वारा, सामंजस्य और माध्य-मूल्य संपत्ति के बीच समानता को साबित करना।

औसत मूल्य संपत्ति के इस बयान को निम्नानुसार सामान्यीकृत किया जा सकता है: यदि h कोई भी गोलाकार रूप से सममित कार्य समर्थन (गणित) B(x, r) है ऐसा है कि तब दूसरे शब्दों में, हम का भारित औसत ले सकते हैं u एक बिंदु के बारे में और ठीक हो जाओ u(x). विशेष रूप से, लेने से h बनने के लिए C समारोह, हम के मूल्य को पुनर्प्राप्त कर सकते हैं u किसी भी बिंदु पर भले ही हम केवल यह जानते हों कि कैसे u एक वितरण (गणित) के रूप में कार्य करता है। वेइल की लेम्मा (लाप्लास समीकरण) देखें | वेइल की लेम्मा।

हार्नैक की असमानता

होने देना u एक बंधे हुए डोमेन में एक गैर-नकारात्मक प्रसंवादी फलन बनें Ω. फिर हर जुड़े सेट के लिए

हार्नैक की असमानता

कुछ स्थिर के लिए रखता है C पर ही निर्भर करता है V और Ω.

विलक्षणताओं को हटाना

विलक्षणताओं को हटाने का निम्नलिखित सिद्धांत प्रसंवादी कार्यों के लिए है। यदि f बिंदीदार खुले उपसमुच्चय पर परिभाषित एक प्रसंवादी फलन है का , जो कम विलक्षण है x0 मौलिक समाधान की तुलना में (के लिए n > 2), वह है

तब f एक प्रसंवादी फलन पर विस्तारित होता है Ω (रिमूवेबल सिंगुलैरिटी की तुलना करें # रीमैन की प्रमेय | एक जटिल चर के कार्यों के लिए रीमैन की प्रमेय)।

लिउविल का प्रमेय

प्रमेय: यदि f सभी पर परिभाषित एक प्रसंवादी फलन है जो ऊपर से घिरा हुआ है या नीचे घिरा हुआ है f स्थिर है।

(लिउविले के प्रमेय (जटिल विश्लेषण) की तुलना करें। एक जटिल चर के कार्यों के लिए लिउविल के प्रमेय)।

एडवर्ड नेल्सन ने परिबद्ध फलनों के मामले में इस प्रमेय का विशेष रूप से संक्षिप्त प्रमाण दिया,[2] ऊपर वर्णित औसत मूल्य संपत्ति का उपयोग करना:

दो बिंदुओं को देखते हुए, दिए गए बिंदुओं को केंद्र के रूप में और समान त्रिज्या वाली दो गेंदों का चयन करें। यदि त्रिज्या काफी बड़ी है, तो दो गेंदें एक साथ आ जाएंगी, सिवाय उनके आयतन के मनमाने ढंग से छोटे अनुपात के। तब से f घिरा हुआ है, दो गेंदों पर इसका औसत मनमाने ढंग से करीब है, और इसी तरह f किसी भी दो बिंदुओं पर समान मान लेता है। </ब्लॉककोट>

प्रमाण को उस मामले में अनुकूलित किया जा सकता है जहां प्रसंवादी फलन f केवल ऊपर या नीचे बँधा हुआ है। एक स्थिरांक जोड़कर और संभवतः -1 से गुणा करके, हम यह मान सकते हैं f गैर-नकारात्मक है। फिर किन्हीं दो बिंदुओं के लिए x और y, और कोई सकारात्मक संख्या R, हम जाने फिर हम गेंदों पर विचार करते हैं BR(x) और BR(y) जहां त्रिभुज असमानता से, पहली गेंद दूसरे में समाहित है।

औसत संपत्ति और अभिन्न की एकरसता से, हमारे पास है

(ध्यान दें कि चूंकि vol BR(x) से स्वतंत्र है x, हम इसे केवल के रूप में निरूपित करते हैं vol BR.) अंतिम व्यंजक में, हम गुणा और भाग कर सकते हैं vol Br और प्राप्त करने के लिए फिर से औसत संपत्ति का उपयोग करें

लेकिन जैसे मात्रा

1 की ओर जाता है। इस प्रकार, की भूमिकाओं के साथ एक ही तर्क x और y उल्टा दिखाता है , ताकि

एक अन्य प्रमाण इस तथ्य का उपयोग करता है कि वीनर प्रक्रिया दी गई है Bt में ऐसा है कि अपने पास सबके लिए t ≥ 0. शब्दों में, यह कहता है कि एक प्रसंवादी फलन ब्राउनियन गति के लिए मार्टिंगेल (संभाव्यता सिद्धांत) को परिभाषित करता है। तब एक युग्मन (संभाव्यता) तर्क प्रमाण को समाप्त करता है।[3]


सामान्यीकरण

कमजोर प्रसंवादी फलन

एक समारोह (या, अधिक आम तौर पर, एक वितरण (गणित)) कमजोर रूप से प्रसंवादी होता है यदि यह लाप्लास के समीकरण को संतुष्ट करता है

एक कमजोर व्युत्पन्न अर्थ में (या, समतुल्य, वितरण के अर्थ में)। एक कमजोर प्रसंवादी फलन लगभग हर जगह दृढ़ता से प्रसंवादी फलन के साथ मेल खाता है, और विशेष रूप से चिकनी है। एक कमजोर प्रसंवादी वितरण ठीक एक मजबूत प्रसंवादी फलन से जुड़ा वितरण है, और इसलिए यह भी चिकना है। यह वेइल की लेम्मा (लाप्लास समीकरण) है | वेइल की लेम्मा।

लाप्लास के समीकरण के अन्य कमजोर योग हैं जो अक्सर उपयोगी होते हैं। इनमें से एक डिरिचलेट का सिद्धांत है, जो सोबोलेव अंतरिक्ष में प्रसंवादी कार्यों का प्रतिनिधित्व करता है H1(Ω) डिरिचलेट ऊर्जा इंटीग्रल के मिनिमाइज़र के रूप में

स्थानीय विविधताओं के संबंध में, यानी सभी कार्य ऐसा है कि सभी के लिए रखता है या समकक्ष, सभी के लिए


कई गुना पर प्रसंवादी कार्य

लाप्लास-बेल्ट्रामी ऑपरेटर का उपयोग करके प्रसंवादी कार्यों को मनमाने ढंग से रीमैनियन कई गुना पर परिभाषित किया जा सकता है Δ. इस संदर्भ में, एक समारोह को प्रसंवादी अगर कहा जाता है

यूक्लिडियन अंतरिक्ष में डोमेन पर प्रसंवादी फ़ंक्शंस के कई गुण इस अधिक सामान्य सेटिंग पर ले जाते हैं, जिसमें माध्य मान प्रमेय (geodesic गेंदों पर), अधिकतम सिद्धांत और हार्नैक असमानता सम्मिलित है। औसत मूल्य प्रमेय के अपवाद के साथ, ये दूसरे क्रम के सामान्य रैखिक अण्डाकार आंशिक अंतर समीकरण ों के संगत परिणामों के आसान परिणाम हैं।

Subharmonic कार्य

C2 समारोह जो संतुष्ट करता है Δf ≥ 0 सबप्रसंवादी कहा जाता है। यह शर्त गारंटी देती है कि अधिकतम सिद्धांत कायम रहेगा, हालांकि प्रसंवादी कार्यों के अन्य गुण विफल हो सकते हैं। अधिक आम तौर पर, एक फलन सबप्रसंवादी होता है, अगर और केवल अगर, इसके डोमेन में किसी भी गेंद के इंटीरियर में, इसका ग्राफ उस प्रसंवादी फलन के नीचे स्थित होता है जो गेंद पर अपने सीमा मूल्यों को प्रक्षेपित करता है।

प्रसंवादी रूप

प्रसंवादी कार्यों के अध्ययन का एक सामान्यीकरण रीमैनियन मैनिफोल्ड्स पर प्रसंवादी रूपों का अध्ययन है, और यह सह-समरूपता के अध्ययन से संबंधित है। इसके अलावा, प्रसंवादी वेक्टर-मूल्यवान फ़ंक्शंस, या दो रिमेंनियन मैनिफोल्ड्स के प्रसंवादी मैप्स को परिभाषित करना संभव है, जो एक सामान्यीकृत डिरिचलेट एनर्जी फंक्शनल के महत्वपूर्ण बिंदु हैं (इसमें एक विशेष मामले के रूप में प्रसंवादी फलन सम्मिलित हैं, जिसके परिणामस्वरूप डिरिचलेट सिद्धांत के रूप में जाना जाता है)। इस प्रकार का प्रसंवादी नक्शा न्यूनतम सतहों के सिद्धांत में प्रकट होता है। उदाहरण के लिए, एक वक्र, जो कि एक अंतराल से एक नक्शा है रिमेंनियन मैनिफोल्ड के लिए, एक प्रसंवादी नक्शा है अगर और केवल अगर यह एक जियोडेसिक है।

कई गुना के बीच प्रसंवादी मानचित्र

यदि M और N दो रीमैनियन मैनिफोल्ड हैं, फिर एक प्रसंवादी मैप डिरिचलेट ऊर्जा के एक महत्वपूर्ण बिंदु के रूप में परिभाषित किया गया है

जिसमें का अंतर है u, और मानदंड वह है जो मीट्रिक द्वारा प्रेरित है M और उस पर N टेंसर उत्पाद बंडल पर मैनिफोल्ड्स के बीच प्रसंवादी मानचित्रों के महत्वपूर्ण विशेष मामलों में न्यूनतम सतह ें सम्मिलित हैं, जो सतह के त्रि-आयामी यूक्लिडियन अंतरिक्ष में सटीक रूप से प्रसंवादी विसर्जन हैं। अधिक आम तौर पर, न्यूनतम सबमनिफोल्ड्स एक मैनिफोल्ड के दूसरे में प्रसंवादी विसर्जन होते हैं। प्रसंवादी निर्देशांक एक ही आयाम के एक यूक्लिडियन अंतरिक्ष के कई गुना से एक खुले उपसमुच्चय से एक प्रसंवादी भिन्नता है।

यह भी देखें

  • बलायज

बिहारमोनिक नक्शा मानचित्र


टिप्पणियाँ

  1. Axler, Sheldon; Bourdon, Paul; Ramey, Wade (2001). हार्मोनिक फंक्शन थ्योरी. New York: Springer. p. 25. ISBN 0-387-95218-7.
  2. Nelson, Edward (1961). "लिउविल के प्रमेय का प्रमाण". Proceedings of the American Mathematical Society. 12 (6): 995. doi:10.1090/S0002-9939-1961-0259149-4.
  3. "संभाव्य युग्मन". Blame It On The Analyst (in English). 2012-01-24. Archived from the original on 8 May 2021. Retrieved 2022-05-26.


संदर्भ


बाहरी कड़ियाँ