चरण रव

From Vigyanwiki
सिग्नल स्रोत विश्लेषक (SSA) द्वारा मापा गया फेज नॉइज़। SSA फेज नॉइज़ का सकारात्मक हिस्सा दिखाता है। इस तस्वीर में मुख्य वाहक का फेज नॉइज़, 3 अन्य सिग्नल और "शोर पहाड़ी" है।
मजबूत सिग्नल के फेज नॉइज़ में एक कमजोर सिग्नल गायब हो जाता है

सिग्नल प्रसंस्करण में, फेज नॉइज़ एक तरंग के चरण में यादृच्छिक उतार-चढ़ाव का आवृत्ति-डोमेन प्रतिनिधित्व होता है, जो पूर्ण आवधिकता (जिटर) से समय-डोमेन विचलन के अनुरूप होता है। सामान्यतः, रेडियो आवृति इंजीनियर एक ऑसीलेटर के फेज नॉइज़ की बात करते हैं, जबकि डिजिटल पद्धति इंजीनियर एक घड़ी के जिटर के साथ काम करते हैं।

परिभाषाएँ

ऐतिहासिक रूप से फेज नॉइज़ के लिए दो परस्पर विरोधी और अभी तक व्यापक रूप से उपयोग की जाने वाली परिभाषाएँ हैं। कुछ लेखक फेज नॉइज़ को केवल सिग्नल चरण के वर्णक्रमीय घनत्व के रूप में परिभाषित करते हैं,[1] जबकि दूसरी परिभाषा सिग्नल के वर्णक्रमीय अनुमान से उत्पन्न चरण स्पेक्ट्रम को संदर्भित करती है।[2] दोनों परिभाषाएँ वाहक से अच्छी तरह से हटाई गई ऑफ़सेट आवृति पर समान परिणाम देती हैं। हालांकि, क्लोज-इन ऑफ़सेट में, दोनों परिभाषाएँ भिन्न हैं।[3]

IEEE फेज नॉइज़ को ℒ(f) = Sφ(f)/2 के रूप में परिभाषित करता है जहां "चरण अस्थिरता" Sφ(f) एक सिग्नल के चरण विचलन का एक तरफा वर्णक्रमीय घनत्व है।[4] यद्यपि Sφ(f) एक तरफा कार्य है, यह चरण में उतार-चढ़ाव के डबल-साइडबैंड वर्णक्रमीय घनत्व का प्रतिनिधित्व करता है।[5][clarification needed] प्रतीक को स्क्रिप्ट L कहा जाता हैं।[6]

पृष्ठभूमि

एक आदर्श इलेक्ट्रॉनिक ऑसीलेटर एक शुद्ध साइन तरंग उत्पन्न करता है। आवृति डोमेन में, यह ऑसीलेटर की आवृति पर डिराक डेल्टा फलन (पॉज़िटिव और नेगेटिव कॉन्जुगेट्स) की एक जोड़ी के रूप में दर्शाया जाएगा अर्थात, सभी सिग्नल की शक्ति एक आवृत्ति पर ही होगी। सभी वास्तविक ऑसीलेटरों में चरण संशोधित इलेक्ट्रॉनिक शोर घटक होते हैं। फेज नॉइज़ घटक आसन्न आवृत्तियों के लिए एक संकेत की शक्ति को फैलाते हैं, जिसके परिणामस्वरूप शोर साइडबैंड होते हैं। ऑसीलेटर फेज नॉइज़ में प्रायः कम आवृत्ति अस्थिर शोर समिलित होता है और इसमें सफेद शोर भी समिलित हो सकता है।

निम्नलिखित शोर-मुक्त सिग्नल पर विचार करें:

v(t) = Acos(2πf0t).

फेज नॉइज़ इस सिग्नल में φ द्वारा दर्शाई गई स्टोकास्टिक प्रक्रिया को सिग्नल में निम्नानुसार जोड़ा जाता है:

v(t) = Acos(2πf0t + φ(t)).

फेज नॉइज़ इसी प्रकार का साइक्लोस्टेशनरी शोर है और यह जिटर से निकटता से संबंधित है। यह विशेष रूप से महत्वपूर्ण प्रकार का फेज नॉइज़ है जो ऑसीलेटर फेज नॉइज़ द्वारा उत्पादित होता है।

फेज नॉइज़ (ℒ(f)) समान्यतः dBc /Hz की इकाइयों में व्यक्त किया जाता है, और यह वाहक से एक निश्चित ऑफ़सेट पर केंद्रित 1 Hz बैंडविड्थ में निहित वाहक के सापेक्ष शोर शक्ति का प्रतिनिधित्व करता है। उदाहरण के लिए, एक निश्चित सिग्नल में 10 kHz के ऑफ़सेट पर -80 dBc/Hz का फेज नॉइज़ हो सकता है और 100 kHz के ऑफ़सेट पर -95 dBc/Hz हो सकता है। फेज नॉइज़ को एकल-साइडबैंड या डबल-साइडबैंड मूल्यों के रूप में मापा और व्यक्त किया जा सकता है, लेकिन जैसा कि पहले उल्लेख किया गया है, IEEE ने परिभाषा को डबल-साइडबैंड PSD के आधे हिस्से के रूप में अपनाया है।

जिटर रूपांतरण

फेज नॉइज़ को कभी-कभी मापा जाता है और ऑफ़सेट आवृति की एक निश्चित सीमा पर ℒ(f) को एकीकृत करके प्राप्त शक्ति के रूप में व्यक्त भी किया जाता है। उदाहरण के लिए, फेज नॉइज़ -40 dBc हो सकता है जो 1 kHz से 100 kHz की सीमा में एकीकृत हो।

इस एकीकृत फेज नॉइज़ (डिग्री में व्यक्त) को निम्न सूत्र का उपयोग करके जिटर (सेकंड में व्यक्त) में परिवर्तित किया जा सकता है:

एक क्षेत्र में 1/f शोर की अनुपस्थिति में जहां फेज नॉइज़ एक -20dBc/दशक ढलान (लीसन का समीकरण) प्रदर्शित करता है, वर्गमूल औसत का वर्ग चक्र जिटर को फेज नॉइज़ से संबंधित किया जा सकता है:[7]

वैसे ही:


माप

फेज नॉइज़ को स्पेक्ट्रम विश्लेषक का उपयोग करके मापा जा सकता है यदि स्पेक्ट्रम विश्लेषक के स्थानीय ऑसीलेटर के संबंध में परीक्षण (DUT) के तहत डिवाइस का फेज नॉइज़ बड़ा है। ध्यान रखा जाना चाहिए कि देखे गए मान मापे गए सिग्नल के कारण हैं न कि स्पेक्ट्रम विश्लेषक के फिल्टर के आकार कारक के कारण। स्पेक्ट्रम विश्लेषक आधारित माप कई दशकों की आवृत्ति पर चरण-शोर शक्ति दिखा सकता है; उदाहरण के लिए, 1 Hz से 10 MHz तक। विभिन्न ऑफसेट आवृत्ति क्षेत्रों में ऑफसेट आवृत्ति वाला ढलान शोर के स्रोत के रूप में सुराग प्रदान कर सकता है; उदाहरण के लिए, कम आवृत्ति झिलमिलाहट का शोर 30 dB प्रति दशक (= 9 dB प्रति सप्तक) घट रहा है।[8]

फेज नॉइज़ मापन पद्धति स्पेक्ट्रम विश्लेषक के विकल्प हैं। ये प्रणालियां आंतरिक और बाहरी संदर्भों का उपयोग कर सकती हैं और अवशिष्ट (योगात्मक) और पूर्ण शोर दोनों के मापन की अनुमति देती हैं। इसके अतिरिक्त, ये सिस्टम कम-शोर और निकट-से-वाहक को माप सकते हैं।

स्पेक्ट्रल शुद्धता

एक आदर्श इलेक्ट्रॉनिक ऑसीलेटर का साइनवेव आउटपुट आवृत्ति स्पेक्ट्रम में एक एकल रेखा है। एक व्यावहारिक ऑसीलेटर में ऐसी पूर्ण वर्णक्रमीय शुद्धता प्राप्त करने योग्य नहीं है। एक सुपरहेटरोडाइन रिसीवर के लिए स्थानीय ऑसीलेटर में फेज नॉइज़ के कारण होने वाली स्पेक्ट्रम लाइन का प्रसार कम से कम होना चाहिए क्योंकि यह IF (मध्यवर्ती आवृत्ति) एम्पलीफायर में फिल्टर द्वारा प्राप्तकर्ता आवृत्ति रेंज को प्रतिबंधित करने के उद्देश्य को पराजित करता है।

यह भी देखें

संदर्भ

  1. Rutman, J.; Walls, F. L. (June 1991), "Characterization of frequency stability in precision frequency sources" (PDF), Proceedings of the IEEE, 79 (6): 952–960, Bibcode:1991IEEEP..79..952R, doi:10.1109/5.84972, archived (PDF) from the original on 2022-10-09
  2. Demir, A.; Mehrotra, A.; Roychowdhury, J. (May 2000), "Phase noise in oscillators: a unifying theory and numerical methods for characterization" (PDF), IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47 (5): 655–674, CiteSeerX 10.1.1.335.5342, doi:10.1109/81.847872, ISSN 1057-7122, archived (PDF) from the original on 2022-10-09
  3. Navid, R.; Jungemann, C.; Lee, T. H.; Dutton, R. W. (2004), "Close-in phase noise in electrical oscillators", Proc. SPIE Symp. Fluctuations and Noise, Maspalomas, Spain
  4. Vig, John R.; Ferre-Pikal, Eva. S.; Camparo, J. C.; Cutler, L. S.; Maleki, L.; Riley, W. J.; Stein, S. R.; Thomas, C.; Walls, F. L.; White, J. D. (26 March 1999), IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology – Random Instabilities, IEEE, ISBN 978-0-7381-1754-6, IEEE Std 1139-1999, see definition 2.7.
  5. IEEE 1999, p. 2, stating ℒ(f) "is one half of the double-sideband spectral density of phase fluctuations."
  6. IEEE 1999, p. 2
  7. An Overview of Phase Noise and Jitter (PDF), Keysight Technologies, May 17, 2001, archived (PDF) from the original on 2022-10-09
  8. Cerda, Ramon M. (July 2006), "Impact of ultralow phase noise oscillators on system performance" (PDF), RF Design: 28–34, archived (PDF) from the original on 2022-10-09


आगे की पढाई