अलेफ संख्या

From Vigyanwiki
Revision as of 00:19, 7 February 2023 by alpha>Maheshchandra
अलेफ़-नॉट, अलेफ़-ज़ीरो, या अलेफ़-नल, सबसे छोटी अनंत कार्डिनल संख्या

गणित में, विशेष रूप से सेट सिद्धान्त में, एलीफ संख्याएं अनंत सेटों की प्रमुखता (या आकार) का प्रतिनिधित्व करने के लिए उपयोग की जाने वाली संख्याओं का एक क्रम है जो कि सुव्यवस्थित किया जा सकता है। उन्हें गणितज्ञ जॉर्ज कैंटर द्वारा पेश किया गया था[1] और उनका नाम उस प्रतीक के नाम पर रखा गया है जिसका उपयोग वह उन्हें निरूपित करने के लिए करते थे , यहूदी अक्षर अलेफ ().[2][lower-alpha 1]

प्राकृतिक संख्या की प्रमुखता है (अलेफ-नॉट या अलेफ-जीरो पढ़ें; अलेफ-नल शब्द का भी कभी-कभी उपयोग किया जाता है), एक सुव्यवस्थित सेट की अगली बड़ी कार्डिनैलिटी अलेफ-वन है तब और इसी तरह। इस तरह जारी रखते हुए, एक कार्डिनल संख्या को परिभाषित करना संभव है हर क्रमिक संख्या के लिए जैसा नीचे लिखा है।

अवधारणा और संकेतन जॉर्ज कैंटर के कारण हैं,[5] जिन्होंने कार्डिनैलिटी की धारणा का स्पष्टिकरण किया और महसूस किया कि अनंत सेट में अलग-अलग कार्डिनैलिटी हो सकती हैं।

अलेफ़ संख्याएँ विस्तारित वास्तविक संख्या रेखा से भिन्न होती हैं () आमतौर पर बीजगणित और कैलकुलस में पाया जाता है, जिसमें अलेफ सेट के आकार को मापते हैं, जबकि अनंत को आमतौर पर या तो वास्तविक संख्या रेखा की चरम सीमा (गणित) के रूप में परिभाषित किया जाता है (एक फ़ंक्शन (गणित) पर लागू होता है या अनुक्रम जो अलग-अलग श्रृंखला के लिए होता है) अनंत या बिना किसी सीमा के बढ़ता है), या विस्तारित वास्तविक संख्या रेखा के चरम बिंदु के रूप में।

अलेफ-नॉट

(अलेफ-नॉट, अलेफ-जीरो या अलेफ-नल भी) सभी प्राकृतिक संख्याओं के सेट की कार्डिनैलिटी है, और एक अनंत संख्या है। सभी परिमित क्रमसूचकों का सेट , कहलाता हैया(जहाँ पे लोअरकेस ग्रीक अक्षर ओमेगा है), जिसकी कार्डिनैलिटी है. एक सेट में कार्डिनैलिटी होती है यदि और केवल यदि यह गणनीय रूप से अनंत है, अर्थात, इसके और प्राकृतिक संख्याओं के बीच एक आक्षेप (एक-से-एक पत्राचार) है। ऐसे सबसेट के उदाहरण हैं

  • सभी पूर्णांकों का सेट ,
  • पूर्णांकों का कोई अनंत उपसमुच्चय, जैसे कि सभी वर्ग संख्याओं का सेट या सभी अभाज्य संख्याओं का समुच्चय,
  • सभी परिमेय संख्याओं का सेट ,
  • सभी रचनात्मक संख्याओं का सेट (ज्यामितीय अर्थ में),
  • सभी बीजीय संख्याओं का सेट ,
  • सभी गणना योग्य संख्याओं का सेट,
  • परिमित लंबाई के सभी बाइनरी स्ट्रिंग (कंप्यूटर विज्ञान) का सेट, और
  • किसी भी गिने-चुने अनंत सेट के सभी परिमित उपसमुच्चयों का सेट ।

ये अनंत अध्यादेश: और एप्सिलॉन नंबर (गणित) |गिने-चुने अनंत सेट ों में से हैं।[6] उदाहरण के लिए, अनुक्रम (क्रमिकता के साथ ) सभी धनात्मक विषम पूर्णांकों के बाद सभी धनात्मक सम पूर्णांक

सेट का ऑर्डरिंग है (कार्डिनैलिटी के साथ ) धनात्मक पूर्णांकों का।

यदि [[गणनीय पसंद का स्वयंसिद्ध]] (पसंद के स्वयंसिद्ध का एक कमजोर संस्करण) धारण करता है, तो किसी भी अन्य अनंत कार्डिनल से छोटा है।

अलेफ-वन

सभी गणनीय क्रमिक संख्याओं के सेट की प्रमुखता है, जिसे कहा जाता है या कभी कभी . यह अपने आप में एक क्रमिक संख्या है जो सभी गणनीय संख्याओं से बड़ी है, इसलिए यह एक बेशुमार सेट है। इसलिए, से भिन्न है . की परिभाषा तात्पर्य है (ZF में, ज़र्मेलो-फ्रेंकेल सेट थ्योरी बिना पसंद के स्वयंसिद्ध) कि कोई कार्डिनल संख्या बीच में नहीं है और . यदि पसंद के स्वयंसिद्ध का उपयोग किया जाता है, तो यह आगे साबित किया जा सकता है कि कार्डिनल संख्याओं का वर्ग पूरी तरह से क्रमबद्ध है, और इस प्रकार दूसरी सबसे छोटी अनंत कार्डिनल संख्या है। पसंद के स्वयंसिद्ध का उपयोग करके, सेट के सबसे उपयोगी गुणों में से एक दिखा सकता है : का कोई गणनीय उपसमुच्चय में एक ऊपरी सीमा है . (यह इस तथ्य से अनुसरण करता है कि गणनीय सेटों की एक गणनीय संख्या का संघ स्वयं गणनीय है - पसंद के स्वयंसिद्ध के सबसे सामान्य अनुप्रयोगों में से एक।) यह तथ्य स्थिति के अनुरूप है  : प्राकृतिक संख्याओं के प्रत्येक परिमित सेट में एक अधिकतम होता है जो एक प्राकृतिक संख्या भी है, और परिमित सेट ों के परिमित संघ परिमित होते हैं।

वास्तव में एक उपयोगी अवधारणा है, अगर कुछ विदेशी लग रहा है। काउंटेबल ऑपरेशंस के संबंध में एक उदाहरण एप्लिकेशन बंद हो रहा है; उदाहरण के लिए, सिग्मा-बीजगणित|σ-बीजगणित का स्पष्ट रूप से वर्णन करने की कोशिश कर रहा है जो उपसमुच्चय के मनमाने संग्रह द्वारा उत्पन्न होता है (उदाहरण के लिए बोरेल पदानुक्रम देखें)। यह बीजगणित (वेक्टर रिक्त स्थान, समूह सिद्धांत, आदि) में पीढ़ी के सबसे स्पष्ट विवरणों की तुलना में कठिन है क्योंकि उन मामलों में हमें केवल परिमित संक्रियाओं - योग, उत्पाद, और इसी तरह के संबंध में बंद करना पड़ता है। इस प्रक्रिया में परिभाषित करना शामिल है, प्रत्येक गणनीय क्रमसूचक के लिए, ट्रांसफिनिट इंडक्शन के माध्यम से, सभी संभावित गणनीय यूनियनों और पूरकों में फेंक कर एक सेट, और सभी के ऊपर सभी का संघ लेना .

सतत परिकल्पना

वास्तविक संख्याओं के सेट की कार्डिनैलिटी (सातत्य की कार्डिनैलिटी) है यह ZFC से निर्धारित नहीं किया जा सकता है (Zermelo-Fraenkel सेट सिद्धांत पसंद के स्वयंसिद्ध के साथ संवर्धित) जहां यह संख्या एलीफ संख्या पदानुक्रम में बिल्कुल फिट बैठती है, लेकिन यह ZFC से अनुसरण करती है कि सातत्य परिकल्पना, CH, पहचान के बराबर है

[7]

सीएच बताता है कि ऐसा कोई सेट नहीं है जिसका कार्डिनैलिटी पूर्णांक और वास्तविक संख्याओं के बीच सख्ती से हो।[8] CH ZFC से स्वतंत्र है: यह उस स्वयंसिद्ध प्रणाली के संदर्भ में न तो सिद्ध किया जा सकता है और न ही अप्रमाणित (बशर्ते कि ZFC संगति हो)। 1940 में कर्ट गोडेल द्वारा प्रदर्शित किया गया था कि CH ZFC के अनुरूप है, जब उन्होंने दिखाया कि इसका निषेध ZFC का प्रमेय नहीं है। यह ZFC से स्वतंत्र है, 1963 में पॉल कोहेन द्वारा प्रदर्शित किया गया था, जब उन्होंने इसके विपरीत दिखाया कि CH स्वयं ZFC का एक प्रमेय नहीं है - फोर्सिंग (गणित) की (तत्कालीन-उपन्यास) विधि द्वारा।[7]


अलेफ-ओमेगा

अलेफ-ओमेगा है

जहां सबसे छोटा अनंत क्रमसूचक निरूपित किया जाता है ω. यानी कार्डिनल नंबर की न्यूनतम ऊपरी सीमा है

पहला बेशुमार कार्डिनल नंबर है जिसे ज़र्मेलो-फ्रेंकेल सेट थ्योरी के भीतर प्रदर्शित किया जा सकता है जो सभी वास्तविक संख्याओं के सेट की कार्डिनैलिटी के बराबर नहीं है; किसी भी धनात्मक पूर्णांक n के लिए हम लगातार यह मान सकते हैं और इसके अलावा यह मान लेना संभव है जितना हम चाहते हैं उतना बड़ा है। हम इसे केवल कुछ विशेष कार्डिनलों के लिए सह-अंतिमता के साथ स्थापित करने से बचने के लिए मजबूर हैं मतलब वहाँ से एक असीमित कार्य है इसके लिए (ईस्टन की प्रमेय देखें)।

== Aleph-α सामान्य α == के लिए परिभाषित करना मनमाना क्रम संख्या के लिए हमें उत्तराधिकारी कार्डिनल को परिभाषित करना चाहिए, जो किसी भी कार्डिनल नंबर को निर्दिष्ट करता है अगला बड़ा सुव्यवस्थित कार्डिनल (यदि पसंद का स्वयंसिद्ध धारण करता है, तो यह अगला बड़ा कार्डिनल है)।

इसके बाद हम एलीफ संख्या को निम्नानुसार परिभाषित कर सकते हैं:

 : और के लिए λ, एक अनंत सीमा क्रमसूचक,
α-th अनंत प्रारंभिक क्रमसूचक लिखा जाता है . इसकी कार्डिनलिटी लिखी गई है ZFC में, अलेफ़ फ़ंक्शन अध्यादेशों से लेकर अनंत कार्डिनलों तक एक आक्षेप है।[9]


== ओमेगा == के निश्चित बिंदु हमारे पास किसी भी क्रमिक α के लिए

कई मामलों में से सख्ती से बड़ा है α. उदाहरण के लिए, किसी भी उत्तराधिकारी क्रमसूचक संख्या α के लिए यह धारण करता है। हालांकि, सामान्य कार्यों के लिए निश्चित-बिंदु लेम्मा के कारण, कुछ सीमा अध्यादेश हैं जो ओमेगा फ़ंक्शन के निश्चित बिंदु (गणित) हैं। पहला ऐसा अनुक्रम की सीमा है
कोई दुर्गम कार्डिनल भी अलेफ़ फ़ंक्शन का एक निश्चित बिंदु है।[10] इसे ZFC में इस प्रकार दिखाया जा सकता है। कल्पना करना एक कमजोर दुर्गम कार्डिनल है। अगर एक उत्तराधिकारी अध्यादेश थे, तब एक उत्तराधिकारी कार्डिनल होगा और इसलिए कमजोर दुर्गम नहीं होगा। अगर से कम एक सीमा अध्यादेश थे फिर इसकी सह-अनिवार्यता (और इस प्रकार की सह-अनिवार्यता ) से कम होगा इसलिए नियमित नहीं होगा और इस प्रकार कमजोर दुर्गम नहीं होगा। इस प्रकार और इसके परिणामस्वरूप जो इसे एक निश्चित बिंदु बनाता है।

पसंद के स्वयंसिद्ध की भूमिका

किसी भी अनंत क्रमिक संख्या की कार्डिनैलिटी एक एलीफ संख्या है। हर एलीफ किसी ऑर्डिनल की कार्डिनैलिटी है। इनमें से सबसे कम इसका प्रारंभिक क्रमसूचक है। कोई भी सेट जिसका कार्डिनैलिटी एक अलेफ है, एक ऑर्डिनल के साथ समतुल्य है और इस प्रकार यह अच्छी तरह से व्यवस्थित है।

प्रत्येक परिमित सेट अच्छी तरह से व्यवस्थित है, लेकिन इसकी कार्डिनैलिटी के रूप में अलेफ़ नहीं है।

यह धारणा है कि प्रत्येक अनंत सेट की कार्डिनैलिटी एक अलेफ़ संख्या है, जो प्रत्येक सेट के एक सुव्यवस्थित क्रम के अस्तित्व के लिए ZF के बराबर है, जो बदले में पसंद के स्वयंसिद्ध के बराबर है। ZFC सेट थ्योरी, जिसमें पसंद का स्वयंसिद्ध शामिल है, का तात्पर्य है कि प्रत्येक अनंत सेट में कार्डिनैलिटी के रूप में एक अलेफ़ संख्या होती है (अर्थात इसके प्रारंभिक क्रम के साथ समतुल्य है), और इस प्रकार अलेफ़ संख्याओं के प्रारंभिक क्रम सभी के लिए प्रतिनिधियों के एक वर्ग के रूप में काम करते हैं। संभव अनंत कार्डिनल नंबर।

जब पसंद के स्वयंसिद्ध के बिना ZF में कार्डिनैलिटी का अध्ययन किया जाता है, तो यह साबित करना संभव नहीं होता है कि प्रत्येक अनंत सेट में कार्डिनैलिटी के रूप में कुछ एलीफ संख्या होती है; वे सेट जिनकी कार्डिनैलिटी एक एलीफ नंबर है, वास्तव में अनंत सेट हैं जिन्हें सुव्यवस्थित किया जा सकता है। ZF की सेटिंग में कार्डिनल नंबरों के लिए प्रतिनिधियों के निर्माण के लिए स्कॉट की चाल की विधि को कभी-कभी वैकल्पिक तरीके के रूप में उपयोग किया जाता है। उदाहरण के लिए परिभाषित किया जा सकता है card(S) के रूप में एक ही कार्डिनैलिटी के साथ सेट का सेट होना S न्यूनतम संभव रैंक का। इसमें वह गुण है card(S) = card(T) अगर और केवल अगर S और T एक ही कार्डिनैलिटी है। (सेट card(S) की समान कार्डिनैलिटी नहीं है S सामान्य तौर पर, लेकिन इसके सभी तत्व करते हैं।)

यह भी देखें

टिप्पणियाँ

  1. In older mathematics books, the letter aleph is often printed upside down by accident – for example, in Sierpiński (1958)[3]: 402  the letter aleph appears both the right way up and upside down – partly because a monotype matrix for aleph was mistakenly constructed the wrong way up.[4]


उद्धरण

  1. Aleph. {{cite encyclopedia}}: |website= ignored (help)
  2. Weisstein, Eric W. "Aleph". mathworld.wolfram.com (in English). Retrieved 2020-08-12.
  3. Sierpiński, Wacław (1958). Cardinal and Ordinal Numbers. Polska Akademia Nauk Monografie Matematyczne. Vol. 34. Warsaw, PL: Państwowe Wydawnictwo Naukowe. MR 0095787.
  4. Swanson, Ellen; O'Sean, Arlene Ann; Schleyer, Antoinette Tingley (1999) [1979]. Mathematics into type: Copy editing and proofreading of mathematics for editorial assistants and authors (updated ed.). Providence, RI: American Mathematical Society. p. 16. ISBN 0-8218-0053-1. MR 0553111.
  5. Miller, Jeff. "Earliest uses of symbols of set theory and logic". jeff560.tripod.com. Retrieved 2016-05-05; who quotes Dauben, Joseph Warren (1990). Georg Cantor: His mathematics and philosophy of the infinite. ISBN 9780691024479. His new numbers deserved something unique. ... Not wishing to invent a new symbol himself, he chose the aleph, the first letter of the Hebrew alphabet ... the aleph could be taken to represent new beginnings ...
  6. Jech, Thomas (2003). Set Theory. Springer Monographs in Mathematics. Berlin, New York: Springer-Verlag.
  7. 7.0 7.1 Szudzik, Mattew (31 July 2018). "Continuum Hypothesis". Wolfram Mathworld. Wolfram Web Resources. Retrieved 15 August 2018.
  8. Weisstein, Eric W. "Continuum Hypothesis". mathworld.wolfram.com (in English). Retrieved 2020-08-12.
  9. aleph numbers at PlanetMath.
  10. Harris, Kenneth A. (April 6, 2009). "Lecture 31" (PDF). Department of Mathematics. kaharris.org. Intro to Set Theory. University of Michigan. Math 582. Archived from the original (PDF) on March 4, 2016. Retrieved September 1, 2012.


बाहरी संबंध