डेल्टॉइड वक्र

From Vigyanwiki
Revision as of 16:29, 17 February 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

ज्यामिति में, डेल्टॉइड वक्र, जिसे ट्राइकसपॉइड वक्र या स्टेनर वक्र के रूप में भी जाना जाता है,और यह तीन कस्प (विलक्षणता) का हाइपोसाइक्लॉइड होता है। दूसरे शब्दों में, यह एकवृत्तकी परिधि पर बिंदु द्वारा बनाई गई रूलेट (वक्र) होती है, यह क्योंकि यह वृत्त के अंदर तीन या डेढ़ गुना त्रिज्या के साथ फिसले बिना लुढ़कता है। इसका नाम ग्रीक अक्षर में डेल्टा (अक्षर) के नाम पर रखा गया है, जो (Δ) से मिलता जुलता है।

मुख्यतः डेल्टॉइड किसी भी बंद आकृति को संदर्भित करता है जिसमें वक्रों से जुड़े तीन कोने होते हैं जो बाहरी रूप से अवतल होता हैं, जो आंतरिक बिंदुओं पर गैर-उत्तल समुच्चय बनाते हैं।[1]

समीकरण

निम्नलिखित पैरामीट्रिक समीकरणों द्वारा हाइपोसाइक्लॉइड का प्रतिनिधित्व (घूर्णन और अनुवाद ज्यामिति में किया जा सकता है

जहाँ a घूर्णन वृत्त की त्रिज्या है, तभ b उस वृत्त की त्रिज्या है जिसके अंदर पूर्वोक्त वृत्त घूर्णन करता है। (उपरोक्त चित्रण में b = 3a त्रिभुजाकार आकृति को इंगित कर रहा है।)

और निर्देशांक में यह इस समीकरण द्वारा प्रदर्शित किया जाता है

.

कार्तीय समीकरण देने के लिए चर t को इन समीकरणों से हटाया जा सकता है

इसलिए 4 डिग्री त्रिकोण के बीजगणितीय वक्र के रूप में प्रदर्शित होता है। जो ध्रुवीय निर्देशांकों में इस समीकरण का रूप ले लेता हैं

इस वक्र में तीन विलक्षणताएँ होती हैं, जिसके अनुरूप क्यूसेप्स होते हैं, उपरोक्त परिमापीकरण का अर्थ है कि वक्र तर्कसंगत है जिसका अर्थ है कि इसमें ज्यामितीय जीनस का मान शून्य है।

एक रेखा खंड डेल्टॉइड पर प्रत्येक छोर के साथ स्लाइड कर सकता है और डेल्टॉइड के स्पर्शरेखा के द्वारा निरूपित होता है। स्पर्शरेखा का बिंदु डेल्टॉइड के चारों ओर दो बार घूर्णन करता है जबकि इसके प्रत्येक छोर कई बार घूर्णन करते हैं।

डेल्टॉइड का दोहरा वक्र कुछ इस प्रकार प्रदर्शित किया जाता है

जिसका मूल बिंदु पर दोहरा बिंदु है जिसे वक्र देते हुए काल्पनिक घूर्णन y ↦ iy द्वारा प्लॉटिंग के लिए दृश्यमान बनाया जा सकता है

वास्तविक तल की उत्पत्ति पर दोहरे बिंदु के साथ प्रदर्शित किया गया हैं।

क्षेत्र और परिधि

लियोनहार्ड यूलर ऑप्टिकल समस्या के संबंध में 1745 में वास्तविक डेल्टॉइड के पहले विचार का इंगित करता है। इस प्रकार डेल्टॉइड का क्षेत्रफल रोलिंगवृत्तसे दोगुना है।[2] डेल्टॉइड की परिधि (कुल चाप लंबाई) 16a है।[2]

इतिहास

1599 की शुरुआत में गैलीलियो गैलीली और मारिन मेर्सेन द्वारा साधारण चक्रज का अध्ययन किया गया था, किन्तु गियर टीथ के लिए सबसे उच्चतम रूप का अध्ययन करते हुए 1674 में ओले रोमर द्वारा पहली बार साइक्लॉयड वक्र की कल्पना की गई थी। लियोनहार्ड यूलर ऑप्टिकल समस्या के संबंध में 1745 में वास्तविक डेल्टॉइड के पहले विचार का प्रामाणित करता है।

अनुप्रयोग

डेल्टोइड्स मुख्यतः गणित के कई क्षेत्रों में उत्पन्न होते हैं। उदाहरण के लिए:

  • ऑर्डर तीन के यूनीस्टोकेस्टिक आव्यहू के जटिल आइजन मान ​​​​का समुच्चय मुख्यतः डेल्टॉइड बनाता है।
  • ऑर्डर के यूनिस्टोकैस्टिक आव्यहू के समुच्चय का क्रॉस-सेक्शन तीन डेल्टॉइड बनाता है।
  • समुच्चय (गणित) SU(3) से संबंधित एकात्मक आव्यहू के संभावित अंशों का समुच्चय डेल्टॉइड बनाता है।
  • दो डेल्टोइड्स का प्रतिच्छेदन क्रम छह के कॉम्प्लेक्स हैडमार्ड आव्यहू को पैरामीट्रिज करता है।
  • दिए गए त्रिभुज की सभी सिमसन रेखाओं का समुच्चय, डेल्टॉइड के आकार का एनवलप (गणित) बनाता है। 1856 में वक्र के आकार और समरूपता का वर्णन करने वाले जैकब स्टेनर के पश्चात इसे स्टेनर डेल्टॉइड या स्टेनर के हाइपोसाइक्लॉइड के रूप में जाना जाता है।[3]
  • समद्विभाजन का एनवलप (गणित) का त्रिभुज क्षेत्र समद्विभाजक माध्यिका (ज्यामिति) के मध्यबिंदुओं पर शीर्षों के साथ त्रिभुजाकार (ऊपर परिभाषित व्यापक अर्थ में) रूप ले लेता हैं। डेल्टॉइड की भुजाएँ अतिशयोक्ति के चाप के जैसे प्रदर्शित होती हैं जो मुख्य रूप से त्रिभुज की भुजाओं के लिए स्पर्शोन्मुख होती हैं।[4] [1]
  • काकेया समुच्चय काकेया की समस्या के समाधान के लिए डेल्टॉइड द्वारा प्रस्तावित किया गया था।

यह भी देखें

  • एस्ट्रॉयड, चार कस्प वाला वक्र
  • वृत्ताकार त्रिभुज, वृत्ताकार चापों से बना तीन-नुकीला वक्र
  • आदर्श त्रिकोण, अतिशयोक्तिपूर्ण रेखाओं से बना तीन-नुकीला वक्र
  • स्यूडोट्राएंगल, तीन स्पर्शरेखा उत्तल सेटों के बीच तीन-बिंदु वाला क्षेत्र
  • तुसी युगल, दो-पुच्छ रूलेट
  • पतंग (ज्यामिति), जिसे डेल्टॉइड भी कहा जाता है

संदर्भ

  1. "Area bisectors of a triangle". www.se16.info. Retrieved 26 October 2017.
  2. 2.0 2.1 Weisstein, Eric W. "Deltoid." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Deltoid.html
  3. Lockwood
  4. Dunn, J. A., and Pretty, J. A., "Halving a triangle," Mathematical Gazette 56, May 1972, 105-108.