एक्स-रे स्पेक्ट्रोस्कोपी
Condensed matter experiments |
---|
ARPES |
ACAR |
Neutron scattering |
X-ray spectroscopy |
Quantum oscillations |
Scanning tunneling microscopy |
एक्स-रे स्पेक्ट्रोस्कोपी एक्स-रे विकिरण का उपयोग करके सामग्री के लक्षण वर्णन के लिए कई स्पेक्ट्रोस्कोपी तकनीकों के लिए एक सामान्य शब्द है।[1]
एक्स-रे स्पेक्ट्रोस्कोपी की विशेषता
जब किसी परमाणु के आंतरिक आवरण से एक इलेक्ट्रॉन फोटॉन की ऊर्जा से उत्तेजित होता है, तो वह उच्च ऊर्जा स्तर पर चला जाता है। जब यह कम ऊर्जा स्तर पर वापस आता है, तो ऊर्जन द्वारा पहले प्राप्त की गई ऊर्जा को एक फोटॉन के रूप में उत्सर्जित किया जाता है जिसमें एक तरंग दैर्ध्य होता है जो तत्व के लिए विशिष्ट होता है (प्रति तत्व कई विशिष्ट तरंग दैर्ध्य हो सकते हैं)। एक्स-रे उत्सर्जन स्पेक्ट्रम का विश्लेषण प्रतिरूप की मौलिक संरचना के बारे में गुणात्मक परिणाम उत्पन्न करता है। ज्ञात संरचना के प्रतिरूपों के स्पेक्ट्रा के साथ प्रतिरूपों के स्पेक्ट्रम की तुलना मात्रात्मक परिणाम उत्पन्न करती है (अवशोषण, प्रतिदीप्ति और परमाणु संख्या के लिए कुछ गणितीय सुधारों के बाद)। आवेशित कणों जैसे इलेक्ट्रॉनों (उदाहरण के लिए एक इलेक्ट्रॉन सूक्ष्मदर्शी में) के एक उच्च-ऊर्जा बीम द्वारा परमाणु उत्तेजित हो सकते हैं, उदाहरण के लिए प्रोटॉन (PIXE देखें) या एक्स-रे का एक बीम (एक्स-रे प्रतिदीप्ति या एक्सआरएफ या हाल ही में ट्रांसमिशन एक्सआरटी में भी देखें)। ये विधियाँ H, He और Li के अपवाद के साथ संपूर्ण आवर्त सारणी के तत्वों का विश्लेषण करने में सक्षम बनाती हैं। इलेक्ट्रॉन माइक्रोस्कोपी में एक इलेक्ट्रॉन किरण एक्स-रे को उत्तेजित करती है; एक्स-रे विकिरण के स्पेक्ट्रा के विशेषता विश्लेषण के लिए दो मुख्य तकनीकें हैं: ऊर्जा-फैलाव एक्स-रे स्पेक्ट्रोस्कोपी (एनर्जी-डिस्पर्सिव एक्स-रे स्पेक्ट्रोस्कोपी) और तरंग दैर्ध्य फैलानेवाला एक्स-रे स्पेक्ट्रोस्कोपी (वेवलेंथ डिस्पर्सिव एक्स-रे स्पेक्ट्रोस्कोपी)। एक्स-रे संचारण (एक्सआरटी) में फोटोइलेक्ट्रिक और कॉम्पटन प्रभावों के आधार पर समतुल्य परमाणु संरचना (जेफ) को प्रग्रहण किया जाता है।
ऊर्जा-परिक्षेपी एक्स-रे स्पेक्ट्रोस्कोपी
ऊर्जा परिक्षेपी एक्स-रे स्पेक्ट्रोमीटर में एक अर्धचालक डिटेक्टर आने वाले फोटॉनों की ऊर्जा को मापता है। डिटेक्टर की अखंडता और संकल्प को बनाए रखने के लिए इसे तरल नाइट्रोजन या पेल्टियर कूलिंग से ठंडा किया जाना चाहिए। ईडीएस व्यापक रूप से इलेक्ट्रॉन सूक्ष्मदर्शी (जहां स्पेक्ट्रोस्कोपी के बजाय इमेजिंग एक मुख्य कार्य है) और सस्ती और / या पोर्टेबल एक्सआरएफ इकाइयों में नियोजित है।[citation needed]
वेवलेंथ-परिक्षेपी एक्स-रे स्पेक्ट्रोस्कोपी
एक तरंग दैर्ध्य-फैलाने वाले एक्स-रे स्पेक्ट्रोमीटर में एक एकल क्रिस्टल ब्रैग के नियम के अनुसार फोटॉनों को अलग करता है, जो तब एक संसंचक द्वारा एकत्र किए जाते हैं। विवर्तन क्रिस्टल और संसूचक को एक दूसरे के सापेक्ष ले जाकर वर्णक्रम के एक विस्तृत क्षेत्र को देखा जा सकता है। एक बड़ी वर्णक्रमीय श्रेणी का निरीक्षण करने के लिए तीन चार भिन्न-भिन्न एकल क्रिस्टल की आवश्यकता हो सकती है। इडीएस के विपरीत डब्ल्यूडीएस अनुक्रमिक वर्णक्रम अधिग्रहण की एक विधि है। जबकि डब्ल्यूडीएस ईडीएस की तुलना में धीमा है और स्पेक्ट्रोमीटर में प्रतिरूप की स्थिति के लिए अधिक संवेदनशीलता है, इसमें बेहतर वर्णक्रमीय स्थिरता और संवेदनशीलता है। डब्ल्यूडीएस व्यापक रूप से सूक्ष्म संपरीक्षण (जहाँ एक्स-रे सूक्ष्मविश्लेषण मुख्य कार्य है) और एक्सआरएफ में उपयोग किया जाता है; यह व्यापक रूप से एक्स-रे विवर्तन के क्षेत्र में उपयोग किया जाता है ताकि विभिन्न डेटा जैसे इंटरप्लानर रिक्ति और ब्रैग के नियम का उपयोग करके घटना एक्स-रे की तरंग दैर्ध्य की गणना की जा सके।
एक्स-रे उत्सर्जन स्पेक्ट्रोस्कोपी
वर्ष 1915 के नोबेल पुरस्कार विजेता विलियम लॉरेंस ब्रैग और विलियम हेनरी ब्रैग की पिता-पुत्र वैज्ञानिक जोड़ी एक्स-रे उत्सर्जन स्पेक्ट्रोस्कोपी के विकास में मूल अग्रणी थे।[2] विलियम हेनरी ब्रैग द्वारा विकसित स्पेक्ट्रोमीटर का एक उदाहरण जिसका उपयोग पिता और पुत्र दोनों द्वारा क्रिस्टल की संरचना की जांच के लिए किया गया था, जिसे लंदन के विज्ञान संग्रहालय में देखा जा सकता है।[3] संयुक्त रूप से उन्होंने उत्तेजना स्रोत के रूप में उच्च-ऊर्जा इलेक्ट्रॉनों का उपयोग करके कई तत्वों के एक्स-रे तरंग दैर्ध्य को उच्च परिशुद्धता के लिए मापा। कैथोड रे ट्यूब या एक्स-रे ट्यूब[4] कई तत्वों के क्रिस्टल के माध्यम से इलेक्ट्रॉनों का पारण करने के लिए प्रयोग की जाने वाली विधि थी। उन्होंने अपने स्पेक्ट्रोमीटरों के लिए बड़ी मेहनत से अनेक हीरक-शासित कांच का विवर्तन झंझरी का उत्पादन किया। क्रिस्टल के विवर्तन के नियम को उनके सम्मान में ब्रैग का नियम कहा जाता है।
सामान्यतः तीव्र और तरंग दैर्ध्य-समस्वरणीय एक्स-रे अब सिंक्रोटॉन से उत्पन्न होते हैं। किसी सामग्री में आने वाली किरण की तुलना में एक्स-रे को ऊर्जा हानि हो सकती है। पुन: उभरती बीम की यह ऊर्जा हानि परमाणु प्रणाली के आंतरिक उत्तेजना को दर्शाती है, जो प्रसिद्ध रमन स्पेक्ट्रोस्कोपी के एक्स-रे एनालॉग है जो ऑप्टिकल क्षेत्र में व्यापक रूप से उपयोग की जाती है।
एक्स-रे क्षेत्र में इलेक्ट्रॉनिक स्थिति में परिवर्तन की जांच के लिए पर्याप्त ऊर्जा होती है (कक्षाओं के बीच संक्रमण; यह प्रकाशीय क्षेत्र के विपरीत है, जहां ऊर्जा हानि प्रायः घूर्णी स्वच्छंदता या कंपन श्रेणी की स्थिति में परिवर्तन के कारण होती है)। उदाहरण के लिए, अत्यधिक कोमल एक्स-रे क्षेत्र (लगभग 1 किलोइलेक्ट्रॉनवोल्ट से नीचे) में क्रिस्टल क्षेत्र उद्दीपन ऊर्जा हानि को उत्पन्न करती है।
फोटॉन-इन-फोटॉन-आउट प्रक्रिया को प्रकीर्णन घटना के रूप में माना जा सकता है। जब एक्स-रे ऊर्जा एक मूल-स्तर के इलेक्ट्रॉन की बाध्यकारी ऊर्जा के अनुरुप होती है, तो यह अवकीर्णन प्रक्रिया परिमाण के अनेक क्रमों से संस्पंदित ढंग से परिवर्धित होती है। इस प्रकार के एक्स-रे उत्सर्जन स्पेक्ट्रोस्कोपी को प्रायः अनुनादी अप्रत्यस्थ एक्स-रे प्रकीर्णन (आरआईएक्सएस) के रूप में जाना जाता है।
मूल स्तरों की कक्षीय ऊर्जाओं के व्यापक पृथक्करण के कारण प्रेरित निश्चित परमाणु का चयन करना संभव है। मूल-स्तर कक्षक की न्यून स्थानिक क्षेत्र आरआईएक्सएस प्रक्रिया को चुने हुए परमाणु के निकट इलेक्ट्रॉनिक संरचना को प्रतिबिंबित करने के लिए विवश करती है। इस प्रकार आरआईएक्सएस प्रयोग जटिल प्रणालियों की स्थानीय इलेक्ट्रॉनिक संरचना के बारे में मूल्यवान जानकारी देते हैं और सैद्धांतिक गणना करने के लिए अपेक्षाकृत सरल हैं।
यंत्र विन्यास
अत्यधिक कोमल एक्स-रे क्षेत्र में एक्स-रे उत्सर्जन स्पेक्ट्रम का विश्लेषण करने के लिए अनेक कुशल प्रारूप उपस्थित हैं। ऐसे उपकरणों के लिए योग्यता का आंकड़ा वर्णक्रमीय साद्यांत है, अर्थात पता लगाई गई तीव्रता और वर्णक्रमीय विभेदन शक्ति का उत्पाद। सामान्यतः इन मापदंडों को उनके उत्पाद को स्थिर रखते हुए एक निश्चित सीमा के अंतर्गत परिवर्तन करना संभव है।
ग्रेटिंग (झंझरी) स्पेक्ट्रोमीटर
सामान्यतः स्पेक्ट्रोमीटर में एक्स-रे विवर्तन क्रिस्टल पर प्राप्त किया जाता है, लेकिन ग्रेटिंग स्पेक्ट्रोमीटर में एक प्रतिरूप से निकलने वाली एक्स-रे को एक स्रोत-परिभाषित रेखाछिद्र से आगे बढना चाहिए, फिर प्रकाशीय तत्व (दर्पण और/या झंझरी) उन्हें उनके तरंग दैर्ध्य के अनुसार विवर्तन द्वारा परिक्षेपित होते हैं और अंत में उनके केंद्रीय बिंदुओं पर एक संसूचक रखा गया है।
गोलाकार झंझरी धारक
हेनरी ऑगस्टस रोलैंड (1848-1901) ने एक ऐसा उपकरण प्रकल्पित किया जिसने एक एकल प्रकाशीय तत्व के उपयोग की अनुमति दी जो विवर्तन और एक गोलाकार झंझरी के साथ ध्यान केंद्रित करता है। प्रयुक्त सामग्री की उपेक्षा किए बिना एक्स-रे की परावर्तकता कम होने के कारण झंझरी पर चारण की घटना आवश्यक है। घटना के कुछ डिग्री के कोण (ऑप्टिक्स) पर एक चिकनी सतह पर टकराने वाले एक्स-रे किरण बाहरी पूर्ण परावर्तन से होकर जाती है, जिसका लाभ वाद्य दक्षता को मूल रूप से बढ़ाने के लिए लिया जाता है।
एक गोलाकार झंझरी की त्रिज्या आर द्वारा निरूपित की जाती है। झंझरी सतह के केंद्र के आधे त्रिज्या आर स्पर्शरेखा के साथ एक चक्र की कल्पना करें। इस छोटे वृत्त को 'रॉलैंड वृत्त' कहा जाता है। यदि प्रवेश द्वार इस वृत्त पर कहीं भी है तो रेखाछिद्र से होकर जाने वाली एक किरण और झंझरी से टकराकर एक विशेष रूप से परावर्तित किरण में विभाजित हो जाएगी और सभी विवर्तन वर्ग के किरण जो एक ही वृत्त पर कुछ बिंदुओं पर ध्यान केंद्रित करते हैं।
समतल झंझरी धारक
प्रकाशीय स्पेक्ट्रोमीटर के समान, एक समतल ग्रेटिंग स्पेक्ट्रोमीटर को पहले प्रकाशिकी की आवश्यकता होती है जो एक्स-रे स्रोत द्वारा उत्सर्जित अपसारी किरणों को एक समानांतर किरण में परिवर्तित कर देता है। यह एक परवलयिक दर्पण का उपयोग करके प्राप्त किया जा सकता है। इस दर्पण से निकलने वाली समानांतर किरणें एक ही कोण पर एक समतल झंझरी (स्थिर खांचे की दूरी के साथ) से टकराती हैं और अपनी तरंग दैर्ध्य के अनुसार विवर्तित होती हैं। एक दूसरा परवलयिक दर्पण तब विवर्तित किरणों को एक निश्चित कोण पर एकत्रित करता है और एक संसूचक पर एक प्रतिबिम्ब का निर्माण करता है। एक निश्चित तरंग दैर्ध्य सीमा के अंतर्गत एक वर्णक्रम को द्विविमीय संवेदनशील स्थिति संसूचक जैसे माइक्रोचैनल प्रकाशगुणक प्लेट या एक्स-रे संवेदनशील सीसीडी चिप (फिल्म प्लेट्स का उपयोग करना भी संभव है) का उपयोग करके समकालिकत अभिलेखित किया जा सकता है।
व्यतिकरणमापी
बहु-किरण व्यतिकरण की अवधारणा का उपयोग करने के बजाय जो झंझरी से दो किरणें उत्पन्न होती हैं, वे केवल हस्तक्षेप कर सकती हैं। किसी निश्चित बिंदु पर दो सह-रैखिक रूप से तीव्रता को अभिलेखबद्ध करके उनके सापेक्ष चरण को परिवर्तित कर पथ लंबाई अंतर के एक फलन के रूप में एक तीव्र तरंग प्राप्त होता है। कोई यह दिखा सकता है कि यह आवृत्ति के एक फलन के रूप में फूरियर रूपांतरित तरंग के समकक्ष है। ऐसे स्पेक्ट्रम की उच्चतम अभिलेखनीय आवृत्ति क्रमवीक्षण में चुने गए न्यूनतम चरण आकार पर निर्भर करती है और आवृत्ति स्थिरता (अर्थात इसकी आवृत्ति के संदर्भ में एक निश्चित तरंग को कितनी अच्छी तरह परिभाषित किया जा सकता है) प्राप्त अधिकतम पथ लंबाई अंतर पर निर्भर करता है। अनुवर्ती विशेषता झंझरी स्पेक्ट्रोमीटर की तुलना में उच्च स्थिरता प्राप्त करने के लिए अत्यधिक संक्षिप्त प्रारूप की अनुमति देती है क्योंकि एक्स-रे तरंग दैर्ध्य प्राप्य पथ लंबाई के अंतर की तुलना में क्षुद्र होते हैं।
यू.एस. में एक्स-रे स्पेक्ट्रोस्कोपी का प्रारंभिक इतिहास
फिलिप्स ग्लोइलैम्पेन फेब्रीकेन का मुख्यालय नीदरलैंड में आइंडहोवन में है, इसकी शुरुआत प्रकाश बल्ब के निर्माता के रूप में हुई, लेकिन यह तब तक विकसित हुआ जब तक कि यह विद्युत उपकरण, इलेक्ट्रॉनिक्स और एक्स-रे उपकरण सहित संबंधित उत्पादों के अग्रणी निर्माताओं में से एक नहीं बन गया। इसके पास दुनिया की सबसे बड़ी अनुसंधान और विकास प्रयोगशालाओं में से एक है। वर्ष 1940 में हिटलर के जर्मनी ने नीदरलैंड को अधिकृत कर लिया था। कंपनी उस कंपनी को पर्याप्त धन हस्तांतरित करने में सक्षम थी जिसे उसने NY में हडसन पर इरविंगटन में एक एस्टेट में R&D प्रयोगशाला के रूप में स्थापित किया था। प्रकाश बल्बों पर उनके काम के विस्तार के रूप में डच संगठन ने ट्रांसफॉर्मर द्वारा संचालित चिकित्सा अनुप्रयोगों के लिए एक्स-रे नालिकाओं की एक पंक्ति विकसित की थी। इन एक्स-रे नालिकाओं को वैज्ञानिक एक्स-रे उपकरणों में भी प्रयोग किया जा सकता था किन्तु बाद के लिए बहुत कम व्यावसायिक आवश्यकता थी। परिणामस्वरूप प्रबंधन ने इस बाजार को विकसित करने का प्रयास करने का निर्णय लिया और उन्होंने हॉलैंड और संयुक्त राज्य अमेरिका दोनों में अपनी अनुसंधान प्रयोगशालाओं में विकास समूहों की स्थापना की।
उन्होंने डॉ. इरा डफेंडैक, मिशिगन विश्वविद्यालय में एक प्रोफेसर और इन्फ्रारेड अनुसंधान पर एक विश्व विशेषज्ञ को प्रयोगशाला का नेतृत्व करने और एक कर्मचारी नियुक्त करने के लिए काम पर रखा। वर्ष 1951 में उन्होंने डॉ डेविड मिलर को अनुसंधान के सहायक निदेशक के रूप में नियुक्त किया। डॉ मिलर ने सेंट लुइस में वाशिंगटन विश्वविद्यालय में एक्स-रे इंस्ट्रूमेंटेशन पर शोध किया था। डॉ. डफेंडैक ने एक्स-रे विवर्तन में एक प्रसिद्ध शोधकर्ता डॉ. बिल पैरिश को एक्स-रे वाद्य विकास पर प्रयोगशाला के अनुभाग का नेतृत्व करने के लिए नियुक्त किया। क्रिस्टल विश्लेषण करने के लिए अकादमिक शोध विभागों में एक्स-रे विवर्तन इकाइयों का व्यापक रूप से उपयोग किया जाता था। विवर्तन इकाई का एक आवश्यक घटक एक बहुत ही सटीक कोण मापने वाला उपकरण था जिसे गोनियोमीटर के रूप में जाना जाता है। ऐसी इकाइयाँ व्यावसायिक रूप से उपलब्ध नहीं थीं, इसलिए प्रत्येक अन्वेषक ने अपना स्वयं इकाइ की बनाने का प्रयास किया था। डॉ पैरिश ने निर्णय लिया की वाद्य बाजार का निर्माण करने के लिए यह उपकर्ण अधिक लाभदायक होगा इसलिए उनके समूह ने गोनियोमीटर बनाना सीखा। यह बाजार तेजी से विकसित हुआ और आसानी से उपलब्ध ट्यूबों और बिजली की आपूर्ति के साथ एक पूर्ण विवर्तन इकाई उपलब्ध कराई गई और सफलतापूर्वक विपणन किया गया।
यू.एस. प्रबंधन नहीं चाहता था कि प्रयोगशाला को एक निर्माण इकाई में परिवर्तित किया जाए, इसलिए उसने एक्स-रे मापयंत्रण बाजार को और विकसित करने के लिए एक वाणिज्यिक इकाई स्थापित करने का निर्णय लिया। वर्ष 1953 में नोरेल्को इलेक्ट्रॉनिक्स की स्थापना माउंट वर्नोन एनवाई में एक्स-रे मापयंत्रण की बिक्री और समर्थन के लिए की गई थी। इसमें एक विक्रय कर्मचारी, एक उत्पादन समूह, एक अभियांत्रिकी विभाग और एक अनुप्रयोग प्रयोगशाला सम्मिलित थी। डॉ मिलर को प्रयोगशाला से अभियांत्रिकी विभाग के प्रमुख के रूप में स्थानांतरित किया गया था। बिक्री स्टाफ ने एक वर्ष में तीन स्कूलों को प्रायोजित किया, एक माउंट वर्नोन में, एक डेनवर में और एक सैन फ्रांसिस्को में। सप्ताह भर चलने वाले स्कूल पाठ्यक्रम में एक्स-रे इंस्ट्रूमेंटेशन की मूल बातें और नोरेल्को उत्पादों के विशिष्ट अनुप्रयोग की समीक्षा की गई। संकाय अभियांत्रिकी विभाग और शैक्षणिक सलाहकारों के सदस्य थे। शैक्षणिक और औद्योगिक अनुसंधान एवं विकास वैज्ञानिकों ने विद्यालयों में अच्छी उपस्थिति रही। अभियांत्रिकी विभाग भी एक नया उत्पाद विकास समूह था। इसने एक्स-रे स्पेक्ट्रोग्राफ को उत्पाद की दिशा में बहुत तेज़ी से संकलित किया और आगामी 8 वर्षों के लिए अन्य संबंधित उत्पादों का योगदान दिया।
एप्लिकेशन लैब एक आवश्यक बिक्री उपकरण था। जब स्पेक्ट्रोग्राफ को एक त्वरित और सटीक विश्लेषणात्मक रसायन शास्त्र उपकरण के रूप में पेश किया गया था, तो इसे व्यापक संदेह के साथ मिला था। सभी अनुसंधान सुविधाओं में एक रसायन विज्ञान विभाग था और विश्लेषणात्मक विश्लेषण "गीली रसायन" विधियों द्वारा किया गया था। भौतिकी के यंत्रों द्वारा इस विश्लेषण को करने के विचार को संदिग्ध माना गया। इस पूर्वाग्रह को दूर करने के लिए, सेल्समैन एक संभावित ग्राहक से एक कार्य के लिए पूछेगा जो ग्राहक "गीले तरीकों" से कर रहा था। कार्य अनुप्रयोग प्रयोगशाला को दिया जाएगा और वे प्रदर्शित करेंगे कि एक्स-रे इकाइयों का उपयोग करके इसे कितनी सही और जल्दी से किया जा सकता है। यह बहुत मजबूत सा साबित हुआलेस उपकरण, विशेष रूप से जब परिणाम नोरेल्को रिपोर्टर में प्रकाशित किए गए थे, कंपनी द्वारा मासिक रूप से वाणिज्यिक और शैक्षणिक संस्थानों में व्यापक वितरण के साथ जारी एक तकनीकी पत्रिका।
एक एक्स-रे स्पेक्ट्रोग्राफ में एक उच्च वोल्टेज बिजली की आपूर्ति (50 kV या 100 kV), एक व्यापक बैंड एक्स-रे ट्यूब, आमतौर पर टंगस्टन एनोड और एक बेरिलियम विंडो, एक नमूना धारक, एक विश्लेषण क्रिस्टल, एक गोनियोमीटर, और होता है। एक एक्स-रे डिटेक्टर डिवाइस। इन्हें चित्र 1 में दर्शाए अनुसार व्यवस्थित किया गया है।
- Index.php?title=File:X-ray spectroscopy Goniometer.jpg
चित्र संख्या 1
ट्यूब से निकलने वाला निरंतर एक्स-स्पेक्ट्रम नमूना को विकीर्ण करता है और नमूने में विशेषता वर्णक्रमीय एक्स-रे लाइनों को उत्तेजित करता है। 92 तत्वों में से प्रत्येक एक विशिष्ट स्पेक्ट्रम का उत्सर्जन करता है। ऑप्टिकल स्पेक्ट्रम के विपरीत, एक्स-रे स्पेक्ट्रम काफी सरल है। सबसे मजबूत रेखा, आमतौर पर कल्प रेखा, लेकिन कभी-कभी लालफा रेखा, तत्व की पहचान करने के लिए पर्याप्त होती है। किसी विशेष रेखा का अस्तित्व किसी तत्व के अस्तित्व को धोखा देता है, और तीव्रता नमूने में विशेष तत्व की मात्रा के समानुपाती होती है। ब्रैग स्थिति द्वारा दिए गए कोण के तहत विशेषता रेखाएं एक क्रिस्टल, विश्लेषक से परिलक्षित होती हैं। क्रिस्टल रोटेशन द्वारा सभी विवर्तन कोण थीटा का नमूना लेता है, जबकि डिटेक्टर संबंधित कोण 2-थीटा पर घूमता है। एक संवेदनशील डिटेक्टर के साथ, एक्स-रे फोटॉनों को अलग-अलग गिना जाता है। कोण के साथ डिटेक्टरों को आगे बढ़ाकर, और इसे ज्ञात समय के लिए स्थिति में छोड़ कर, प्रत्येक कोणीय स्थिति पर गिनती की संख्या रेखा की तीव्रता देती है। इन गणनाओं को एक उपयुक्त प्रदर्शन इकाई द्वारा एक वक्र पर अंकित किया जा सकता है। विशिष्ट एक्स-रे विशिष्ट कोणों पर निकलते हैं, और चूंकि प्रत्येक एक्स-रे वर्णक्रमीय रेखा के लिए कोणीय स्थिति ज्ञात और रिकॉर्ड की जाती है, इसलिए नमूने की संरचना का पता लगाना आसान होता है।
मोलिब्डेनम नमूने के स्कैन के लिए एक चार्ट अंजीर में दिखाया गया है। 2. बाईं ओर लंबा शिखर 12 डिग्री के दो थीटा पर विशेषता अल्फा लाइन है। दूसरी और तीसरी क्रम रेखाएँ भी दिखाई देती हैं।
- Index.php?title=File:Molybdenum specimen chart.jpg
चित्र संख्या 2
चूंकि अल्फा रेखा प्रायः अनेक औद्योगिक अनुप्रयोगों में रुचि की एकमात्र रेखा होती है, अतः नोरेल्को एक्स-रे स्पेक्ट्रोग्राफिक मापयंत्रण रेखा में अंतिम उपकरण ऑट्रोमीटर था। इस उपकरण को किसी वांछित समय अंतराल के लिए दो थीटा कोण पर स्वचालित रूप से अध्ययन के लिए प्रोग्राम किया जा सकता है।
ऑटोमीटर के आरम्भ के तुरंत बाद ही फिलिप्स ने यू.एस. और यूरोप दोनों में विकसित एक्स-रे उपकरणों का विपणन बंद करने का निर्णय लिया और केवल आइंडहोवन रेखा के उपकरणों की भेँट पर समझौता किया।
वर्ष 1961 में ऑटोमीटर नोरेल्को के विकास के समय जेट प्रोपल्शन प्रयोगशाला से एक उप-अनुबंध दिया गया था। प्रयोगशाला सर्वेक्षक अन्तरिक्ष यान के लिए मापयंत्रण संकुल पर काम कर रहा था। चंद्रमा की सतह की रचना प्रमुख रुचि थी और एक्स-रे संसूचक उपकरण के उपयोग को संभावित समाधान के रूप में देखा गया था। 30 वाट की विद्युत सीमा के साथ काम करना बहुत चुनौतीपूर्ण था और एक उपकरण दिया गया लेकिन उसका उपयोग नहीं किया गया। पश्चातवर्ती नासा के विकास ने एक्स-रे स्पेक्ट्रोग्राफिक इकाई का संचालन किया जिसने वांछित चंद्रमा की मिट्टी विश्लेषण किया।
नोरेल्को के प्रयास फीके पड़ गए लेकिन एक्सआरएफ उपकरणों के रूप में जानी जाने वाली इकाइयों में एक्स-रे स्पेक्ट्रोस्कोपी का उपयोग बढ़ता रहा। नासा से बढ़ावा के साथ, इकाइयों को अंततः हाथ के आकार में कम कर दिया गया और व्यापक उपयोग देखा जा रहा है। ब्रुकर, थर्मो साइंटिफिक, एल्वाटेक लिमिटेड और स्पेक्ट्रा से इकाइयां उपलब्ध हैं।
अन्य प्रकार के एक्स-रे स्पेक्ट्रोस्कोपी
- एक्स-रे अवशोषण स्पेक्ट्रोस्कोपी
- एक्स-रे चुंबकीय वृत्ताकार द्वैतवाद
यह भी देखें
- बरमा इलेक्ट्रॉन स्पेक्ट्रोस्कोपी
- एक्स-रे स्पेक्ट्रोमेट्री (पत्रिका)
- सीडीटीई/सीडीजेएनटीई स्पेक्ट्रोमेट्रिक डिटेक्टरों पर आधारित विस्फोटक पहचान के नए दृष्टिकोण
संदर्भ
- ↑ "x ray spectroscopy" (PDF).
- ↑ Stoddart, Charlotte (1 March 2022). "Structural biology: How proteins got their close-up". Knowable Magazine. doi:10.1146/knowable-022822-1. Retrieved 25 March 2022.
- ↑ "Bragg X-ray spectrometer, England, 1910-1926". Science Museum Group Collection. 2022.
- ↑ Fonda, Gorton R.; Collins, George B. (1931-01-01). "The Cathode Ray Tube in X-Ray Spectroscopy and Quantitative Analysis". Journal of the American Chemical Society. 53 (1): 113–125. doi:10.1021/ja01352a017. ISSN 0002-7863.