अभिकलनात्मक वैद्युत चुंबकीय
कम्प्यूटेशनल विद्युत चुम्बकीय (सीईएम) या विद्युत चुम्बकीय मॉडल भौतिक वस्तुओं और पर्यावरण के साथ विद्युत चुम्बकीय क्षेत्रों के पारस्परिक प्रभाव को मॉडलिंग करने की प्रक्रिया है।
इसमें सामान्यतः ऐंटिना प्रदर्शन, विद्युत चुम्बकीय संगतता, रडार प्रतिनिधित्व और विद्युत चुम्बकीय तरंग प्रसार की गणना करने के लिए मैक्सवेल के समीकरणों के अनुमानित समाधानों की गणना करने के लिए कंप्यूटर प्रोग्राम का उपयोग करना सम्मिलित होता है जब मुक्त स्थान में न हो तब एक विस्तृत उपक्षेत्र ऐंटिना मॉडलिंग कंप्यूटर प्रोग्राम होता है जो रेडियो एंटेना के विकिरण विधि और विद्युत गुणों की गणना करता है तथा इसको विशिष्ट अनुप्रयोगों के लिए एंटेना डिजाइन मे व्यापक रूप से उपयोग किया जाता है।
संरचना
वास्तविक उपकरणों में पाई जाने वाली अनियमित ज्यामितीय समूह के लिए कई वास्तविक विद्युत चुम्बकीय समस्याएं जैसे विद्युत चुम्बकीय संरक्षण, विद्युत चुम्बकीय विकिरण, वेवगाइड्स (तरंग पथक) के मॉडलिंग आदि विश्लेषणात्मक रूप से गणना योग्य नहीं हैं। कम्प्यूटेशनल संख्यात्मक तकनीकें मीडिया के विभिन्न संवैधानिक संबंधों और सीमा स्थितियों के अंतर्गत मैक्सवेल के समीकरणों के विवृत समाधानों को प्राप्त करने में असमर्थता को दूर कर सकती हैं। यह कम्प्यूटेशनल विद्युत चुम्बकीय (सीईएम) को अन्य अनुप्रयोगों के बीच एंटीना, रडार, उपग्रह और अन्य संचार प्रणालियों, सूक्ष्म फोटोनिक उपकरणों और उच्च गति सिलिकॉन इलेक्ट्रॉनिक्स, चिकित्सीय प्रतिबिंबन, सेल-फोन एंटीना डिजाइन के डिजाइन और मॉडलिंग के लिए महत्वपूर्ण बनाता है।
सीईएम सामान्यतः समस्या डोमेन में ई (इलेक्ट्रिक) और एच (चुंबकीय) क्षेत्रों की गणना करने की समस्या को हल करता है उदाहरण के लिए, अपेक्षाकृतरूप से विभिन्न आकार वाली एंटीना संरचना के लिए एंटीना विकिरण पैटर्न की गणना करने के लिए विद्युत प्रवाह दिशा (पॉयंटिंग सदिश) की गणना एक तरंग पथक के सामान्य मोड, मीडिया-जनित तरंग प्रसारण और संरक्षण की गणना ई और एच क्षेत्रों से की जा सकती है। सीईएम मॉडल आदर्शीकृत सिलेंडरों, क्षेत्रों और अन्य नियमित ज्यामितीय वस्तुओं के लिए वास्तविक संरचनाओं को सरल बनाने, समरूपता ग्रहण कर सकते हैं या नहीं ग्रहण कर सकते हैं। सीईएम मॉडल विस्तृत पैमाने पर समरूपता का उपयोग करते हैं और 3 स्थानिक आयामों से 2डी और यहां तक कि 1डी तक कम आयाम के लिए हल करते हैं।
सीईएम की एक आइगेन मान समस्या सूत्रीकरण संरचना में स्थिर स्थिति सामान्य मोड की गणना करने की स्वीकृति देता है। एफडीटीडी द्वारा समय डोमेन में सीईएम द्वारा क्षणिक प्रतिक्रिया और आवेग क्षेत्र प्रभाव अधिक उपयुक्त रूप से तैयार किए जाते हैं। घूर्णन ज्यामितीय वस्तुओं को परिमित तत्वों एफईएम या गैर-लंबकोणीय ग्रिड (विद्युत् प्रवाह जाल) के रूप में अधिक उपयुक्त रूप से सरलीकृत किया जाता है। बीम प्रसारण विधि (बीपीएम) तरंग में विद्युत प्रवाह के लिए हल कर सकती है। सीईएम अनुप्रयोग विशिष्ट होते है यद्यपि अलग-अलग तकनीकें एक ही क्षेत्र और मॉडल किए गए डोमेन में विद्युत प्रवाह के रूप मे अभिसरण करती हैं।
विधियों का अवलोकन
एक तरीका यह है कि समष्टि को विद्युत् प्रवाह जाल (लंबकोणीय और गैर-लंबकोणीय दोनों) के संदर्भ में विभाजित किया जाए और ग्रिड में प्रत्येक बिंदु पर मैक्सवेल के समीकरणों को हल किया जाए। जो कंप्यूटर मेमोरी का प्रयोग करता है और समीकरणों को हल करने में अपेक्षाकृत अधिक समय लगता है। बड़े पैमाने पर सीईएम समस्याओं का सामना मेमोरी और सीपीयू की सीमाओं से होता है। 2007 तक, सीईएम समस्याओं के लिए सुपर कंप्यूटर,[citation needed] उच्च प्रदर्शन क्लस्टर,[citation needed] प्रोसेसर या समानता की आवश्यकता होती है। विशिष्ट समीकरणों में समानता के लिए समस्त डोमेन पर समीकरणों के माध्यम से परिमित तत्व विधियों द्वारा मॉडलिंग किए जाने पर कार्यों के भार की गणना करने के लिए बैंडेड आव्यूह व्युत्क्रम के माध्यम से या आव्यूह उत्पाद स्थानांतरण आव्यूह विधियों का उपयोग करते समय या क्षणों की विधि (एमओएम) का उपयोग करते समय इंटीग्रल की गणना करना या विभाजन विधि या बीपीएम द्वारा गणना करते समय फूरियर रूपांतरण और समय पुनरावृत्तियों का उपयोग करना समय निर्धारण के साथ सम्मिलित होता है
विधियों का चयन
किसी समस्या को हल करने के लिए सही तकनीक का चयन करना महत्वपूर्ण होता है क्योंकि गलत विधि को चुनने से या तो गलत परिणाम हो सकते हैं या ऐसे परिणाम जिनकी गणना करने में अत्यधिक समय लगता है। हालांकि, एक तकनीक का नाम यह नहीं प्रदर्शित करता है कि इसे कैसे कार्यान्वित किया जाता है विशेष रूप से व्यावसायिक उपकरणों के लिए, जिसमें प्रायः एक से अधिक हल होते हैं। डेविडसन[1] एफईएम, एमओएम और एफडीटीडी तकनीकों की तुलना को सामान्य रूप से प्रयुक्त करने के तरीके से दो तालिकाएँ है। एक तालिका विवृत क्षेत्र (विकिरण और संरक्षण की समस्या) दोनों के लिए है और दूसरी तालिका निर्देशित तरंग समस्याओं के लिए होती है।
अतिपरवलीय पीडीई विधि में मैक्सवेल के समीकरण
मैक्सवेल के समीकरणों को आंशिक अवकल समीकरणों की अतिपरवलीय प्रणाली के रूप में तैयार किया जा सकता है। यह संख्यात्मक हल के लिए महत्वपूर्ण तकनीकों तक समीकरणों को प्रदान करती है।
यह माना जाता है कि तरंगें (x, y) समतल अक्ष में विस्तृत होती हैं और चुंबकीय क्षेत्र की दिशा को z- अक्ष के समानांतर होने तक सीमित करती हैं और इस प्रकार विद्युत क्षेत्र (x, y) समतल अक्ष के समानांतर होता है। तरंग को अनुप्रस्थ चुंबकीय (टीएम) तरंग कहा जाता है। 2डी में और कोई ध्रुवणता सम्मिलित नहीं होती है तब मैक्सवेल के समीकरणों को इस प्रकार हल किया जा सकता है:
कुछ समस्याओं को सरल बनाने के लिए या एक सामान्यीकृत समीकरण खोजने के लिए स्पष्ट रूप से शून्य के बराबर परिभाषित किया जा सकता है, जो प्रायः एक विशेष विषम हल को खोजने के लिए एक विधि में प्रयुक्त होने वाला समीकरण है।
समाकल समीकरण हल
असतत द्विध्रुवीय सन्निकटन
असतत द्विध्रुवीय सन्निकटन अपेक्षाकृत ज्यामिति के लक्ष्यों द्वारा प्रकीर्णन और अवशोषण की गणना के लिए एक सामान्य तकनीक है। जो सूत्रीकरण मैक्सवेल समीकरणों के अभिन्न रूप पर आधारित है। डीडीए ध्रुवणता योग्य बिंदुओं की एक परिमित सरणी द्वारा असतत लक्ष्य का एक अनुमान है। अंक स्थानीय विद्युत क्षेत्र की प्रतिक्रिया में द्विध्रुव आघूर्ण प्राप्त करते हैं। द्विध्रुवीय निश्चित रूप से अपने विद्युत क्षेत्रों के माध्यम से एक दूसरे के साथ पारस्परिक क्रिया करते हैं, इसलिए डीडीए को कभी-कभी युग्मित द्विध्रुवीय सन्निकटन के रूप में भी जाना जाता है। परिणामी समीकरणों की रैखिक प्रणाली को सामान्यतः संयुग्मी ढाल पुनरावृत्तियों का उपयोग करके हल किया जाता है। असंततकरण त्रुटि आव्यूह में समरूपता है मैक्सवेल समीकरणों का अभिन्न रूप है संयुग्म समाकलन पुनरावृत्तियों के समय आव्यूह सदिश को गुणा करने के लिए फूरियर रूपांतरण को सक्षम करता है।
आघूर्ण की विधि और सीमा तत्व विधि
क्षणों की विधि (विद्युत चुम्बकीय) (एमओएम)[2] या सीमा तत्व विधि (बीईएम) रैखिक आंशिक अंतर समीकरणों को हल करने का एक संख्यात्मक कम्प्यूटेशनल तरीका है जिसे अभिन्न समीकरणों (यानी सीमा अभिन्न रूप में) के रूप में तैयार किया गया है। यह इंजीनियरिंग और विज्ञान के कई क्षेत्रों में प्रयुक्त किया जा सकता है जिसमें द्रव यांत्रिकी, ध्वनिकी, विद्युत चुम्बकीय, फ्रैक्चर यांत्रिकी और प्लास्टिसिटी (भौतिकी) सम्मिलित हैं।
एमओएम 1980 के दशक से अधिक लोकप्रिय हो गया है। क्योंकि इसमें पूरे अंतरिक्ष में मूल्यों के बजाय केवल सीमा मूल्यों की गणना करने की आवश्यकता होती है, यह एक छोटी सतह/आयतन अनुपात वाली समस्याओं के लिए कम्प्यूटेशनल संसाधनों के मामले में काफी अधिक कुशल है। संकल्पनात्मक रूप से, यह प्रतिरूपित सतह पर "जाल" बनाकर काम करता है। हालांकि, कई समस्याओं के लिए, एमओएम वॉल्यूम-डिस्क्रिटाइजेशन विधियों (परिमित तत्व विधि, परिमित अंतर विधि, परिमित मात्रा विधि) की तुलना में कम्प्यूटेशनल रूप से कम कुशल हैं। सीमा तत्व सूत्रीकरण सामान्यतः पूरी तरह से आबादी वाले मेट्रिसेस को जन्म देते हैं। इसका मतलब यह है कि समस्या के आकार के वर्ग के अनुसार भंडारण आवश्यकताओं और कम्प्यूटेशनल समय में वृद्धि होगी। इसके विपरीत, परिमित तत्व मेट्रिसेस सामान्यतः बैंडेड होते हैं (तत्व केवल स्थानीय रूप से जुड़े होते हैं) और सिस्टम मेट्रिसेस के लिए स्टोरेज आवश्यकताएं सामान्यतः समस्या के आकार के साथ रैखिक रूप से बढ़ती हैं। इन समस्याओं को सुधारने के लिए संपीड़न तकनीकों (जैसे मल्टीपोल विस्तार या अनुकूली क्रॉस सन्निकटन/पदानुक्रमित आव्यूह) का उपयोग किया जा सकता है, हालांकि अतिरिक्त जटिलता की कीमत पर और सफलता-दर के साथ जो समस्या की प्रकृति और ज्यामिति पर बहुत अधिक निर्भर करता है।
एमओएम उन समस्याओं पर प्रयुक्त होता है जिनके लिए ग्रीन के कार्यों की गणना की जा सकती है। इनमें सामान्यतः रेखीय समरूपता (भौतिकी) मीडिया में क्षेत्र सम्मिलित होते हैं। यह सीमा तत्वों के लिए उपयुक्त समस्याओं की सीमा और व्यापकता पर काफी प्रतिबंध लगाता है। गैर-रैखिकताओं को सूत्रीकरण में सम्मिलित किया जा सकता है, हालांकि वे सामान्यतः वॉल्यूम इंटीग्रल पेश करते हैं, जिसके लिए एमओएम के प्रायः उद्धृत लाभ को हटाते हुए वॉल्यूम को समाधान से पहले अलग करने की आवश्यकता होती है।
फास्ट मल्टीपोल विधि
फ़ास्ट मल्टीपोल मेथड (एफएमएम) एमओएम या इवाल्ड समन का एक विकल्प है। यह एक सटीक सिमुलेशन तकनीक है और इसके लिए एमओएम की तुलना में कम मेमोरी और प्रोसेसर पावर की आवश्यकता होती है। एफएमएम को सबसे पहले लेस्ली ग्रीनगार्ड और व्लादिमीर रोखलिन (अमेरिकी वैज्ञानिक) द्वारा पेश किया गया था।[3][4] और मल्टीपोल विस्तार तकनीक पर आधारित है। कम्प्यूटेशनल विद्युत चुम्बकीय में एफएमएम का पहला अनुप्रयोग एंघेटा एट अल (1992) द्वारा किया गया था।[5] एफएमएम का उपयोग एमओएम में तेजी लाने के लिए भी किया जा सकता है।
प्लेन वेव टाइम-डोमेन
जबकि फास्ट मल्टीपोल विधि स्थिर या फ़्रीक्वेंसी-डोमेन ऑसिलेटरी कर्नेल के साथ इंटीग्रल समीकरणों के एमओएम समाधानों को गति देने के लिए उपयोगी है, प्लेन वेव टाइम-डोमेन (PWTD) एल्गोरिथ्म मंदता वाले समय-डोमेन इंटीग्रल समीकरणों के एमओएम समाधान को गति देने के लिए समान विचारों को नियोजित करता है। संभावना। पीडब्ल्यूटीडी एल्गोरिथ्म को 1998 में एर्गिन, शंकर और मिचेलसेन द्वारा पेश किया गया था।[6]
आंशिक तत्व समकक्ष सर्किट विधि
आंशिक तत्व समकक्ष सर्किट (पीईईसी) एक 3डी फुल-वेव मॉडलिंग विधि है जो संयुक्त विद्युत चुंबकत्व और विद्युत सर्किट विश्लेषण के लिए उपयुक्त है। एमओएम के विपरीत, पीईईसी एक पूर्ण स्पेक्ट्रम विधि है जो dc से मेशिंग द्वारा निर्धारित अधिकतम आवृत्ति तक मान्य है। पीईईसी विधि में, अभिन्न समीकरण की व्याख्या किरचॉफ के वोल्टेज कानून के रूप में की जाती है, जो मूल पीईईसी सेल पर प्रयुक्त होता है, जिसके परिणामस्वरूप 3D ज्यामिति के लिए एक पूर्ण सर्किट समाधान होता है। समतुल्य सर्किट सूत्रीकरण अतिरिक्त स्पाइस प्रकार के सर्किट तत्वों को आसानी से सम्मिलित करने की स्वीकृति देता है। इसके अलावा, मॉडल और विश्लेषण दोनों समय और आवृत्ति डोमेन पर प्रयुक्त होते हैं। पीईईसी मॉडल से उत्पन्न सर्किट समीकरण संशोधित लूप विश्लेषण (एमएलए) या संशोधित नोडल विश्लेषण (एमएनए) फॉर्मूलेशन का उपयोग करके आसानी से बनाए जाते हैं। प्रत्यक्ष वर्तमान समाधान प्रदान करने के अलावा, इस वर्ग की समस्याओं के लिए एमओएम विश्लेषण पर इसके कई अन्य फायदे हैं क्योंकि किसी भी प्रकार के सर्किट तत्व को उपयुक्त आव्यूह स्टैम्प के साथ सीधे तरीके से सम्मिलित किया जा सकता है। पीईईसी पद्धति को हाल ही में गैर-लंबकोणीय ज्यामितीयों को सम्मिलित करने के लिए विस्तारित किया गया है। यह मॉडल विस्तार, जो शास्त्रीय लंबकोणीय फॉर्मूलेशन के अनुरूप है, में अधिक सामान्य चतुर्भुज और षट्फलकीय तत्वों के अतिरिक्त ज्यामिति का मैनहट्टन प्रतिनिधित्व सम्मिलित है। यह अज्ञात की संख्या को कम से कम रखने में मदद करता है और इस प्रकार गैर-लंबकोणीय ज्यामिति के लिए कम्प्यूटेशनल समय कम करता है।[7]
क्षणों की कैग्नियार्ड-डीहूप विधि
कैग्नियार्ड डीहूप मेथड ऑफ़ मोमेंट्स (CdH-एमओएम) एक 3-डी फुल-वेव टाइम-डोमेन इंटीग्रल-इक्वेशन तकनीक है जिसे लोरेंत्ज़ पारस्परिकता प्रमेय के माध्यम से तैयार किया गया है। चूँकि CdH-एमओएम, कैग्नियार्ड डीहूप विधि पर बहुत अधिक निर्भर करता है, मूल रूप से पृथ्वी के क्रस्टल मॉडल में भूकंपीय तरंग प्रसार के विश्लेषणात्मक विश्लेषण के लिए विकसित एक संयुक्त-परिवर्तन दृष्टिकोण, यह दृष्टिकोण प्लानरली के TD EM विश्लेषण के लिए अच्छी तरह से अनुकूल है। स्तरित संरचनाएं। सीडीएच-एमओएम मूल रूप से बेलनाकार और प्लानर एंटेना के समय-डोमेन प्रदर्शन अध्ययन पर प्रयुक्त किया गया है[8] और, हाल ही में, पतली शीट की उपस्थिति में ट्रांसमिशन लाइनों के टीडी ईएम स्कैटरिंग विश्लेषण के लिए[9] और विद्युत चुम्बकीय मेटासर्फ्स,[10][11] उदाहरण के लिए।
विभेदक समीकरण सॉल्वर
परिमित-अंतर समय-डोमेन
परिमित-अंतर समय-डोमेन (एफडीटीडी) एक लोकप्रिय सीईएम तकनीक है। इसे समझना आसान है। पूर्ण तरंग सॉल्वर के लिए इसका असाधारण सरल कार्यान्वयन है। यह एफईएम या एमओएम सॉल्वर की तुलना में एक बुनियादी एफडीटीडी सॉल्वर को प्रयुक्त करने के लिए कम से कम परिमाण कम काम का एक क्रम है। एफडीटीडी एकमात्र ऐसी तकनीक है जहां एक व्यक्ति उचित समय सीमा में वास्तविक रूप से खुद को प्रयुक्त कर सकता है, लेकिन फिर भी, यह काफी विशिष्ट समस्या के लिए होगा।[1] चूंकि यह एक टाइम-डोमेन विधि है, इसलिए समाधान एकल सिमुलेशन रन के साथ एक व्यापक आवृत्ति रेंज को कवर कर सकते हैं, बशर्ते वांछित उच्चतम आवृत्ति के लिए Nyquist-Shannon नमूनाकरण प्रमेय को संतुष्ट करने के लिए समय कदम काफी छोटा हो।
एफडीटीडी ग्रिड-आधारित डिफरेंशियल टाइम-डोमेन न्यूमेरिकल मॉडलिंग विधियों के सामान्य वर्ग से संबंधित है। मैक्सवेल के समीकरण (आंशिक अंतर समीकरण रूप में) को केंद्रीय-अंतर समीकरण में संशोधित किया जाता है, अलग किया जाता है और सॉफ्टवेयर में प्रयुक्त किया जाता है। समीकरणों को चक्रीय तरीके से हल किया जाता है: विद्युत क्षेत्र को एक निश्चित समय पर हल किया जाता है, फिर चुंबकीय क्षेत्र को अगले समय में हल किया जाता है, और प्रक्रिया को बार-बार दोहराया जाता है।
बुनियादी एफडीटीडी एल्गोरिथम एंटेना और प्रसार पर IEEE लेनदेन में केन यी द्वारा 1966 के एक मौलिक पेपर का पता लगाता है। एलन टैफ्लोव ने आईईईई ट्रांस में 1980 के पेपर में डिस्क्रिप्टर "फिनिट-डिफरेंस टाइम-डोमेन" और इसके संबंधित "एफडीटीडी" परिवर्णी शब्द की उत्पत्ति की। इलेक्ट्रोमैगन। संगत। लगभग 1990 के बाद से, एफडीटीडी तकनीक भौतिक संरचनाओं के साथ विद्युत चुम्बकीय तरंग अंतःक्रियाओं को संबोधित करने वाली कई वैज्ञानिक और इंजीनियरिंग समस्याओं को मॉडल करने के प्राथमिक साधन के रूप में उभरी है। मोहम्मदियन एट अल द्वारा टाइम-डोमेन परिमित-मात्रा विवेकीकरण प्रक्रिया के आधार पर एक प्रभावी तकनीक पेश की गई थी। 1991 में।[12] वर्तमान एफडीटीडी मॉडलिंग अनुप्रयोगों में माइक्रोवेव (रडार हस्ताक्षर प्रौद्योगिकी, एंटेना, वायरलेस संचार उपकरण, डिजिटल इंटरकनेक्ट, बायोमेडिकल इमेजिंग/ट्रीटमेंट) के माध्यम से दृश्य प्रकाश (फोटोनिक क्रिस्टल, नैनोप्लाज्मोनिक्स, सॉलिटॉन्स और बायोफोटोनिक्स)। लगभग 30 व्यावसायिक और विश्वविद्यालय-विकसित सॉफ़्टवेयर सूट उपलब्ध हैं।
असंतुलित समय-डोमेन विधि
कई समय डोमेन विधियों के बीच, असंतत गैलेरकिन टाइम डोमेन (डीजीटीडी) विधि हाल ही में लोकप्रिय हो गई है क्योंकि यह परिमित मात्रा समय डोमेन (एफवीटीडी) विधि और परिमित तत्व समय डोमेन (एफईटीडी) विधि दोनों के लाभों को एकीकृत करती है। एफवीटीडी की तरह, संख्यात्मक प्रवाह का उपयोग पड़ोसी तत्वों के बीच सूचनाओं के आदान-प्रदान के लिए किया जाता है, इस प्रकार डीजीटीडी के सभी ऑपरेशन स्थानीय और आसानी से समानांतर होते हैं। एफईटीडी के समान, डीजीटीडी असंरचित जाल को नियोजित करता है और उच्च-क्रम सटीकता के लिए सक्षम है यदि उच्च-क्रम पदानुक्रमित आधार फ़ंक्शन को अपनाया जाता है। उपरोक्त खूबियों के साथ, बड़ी संख्या में अज्ञात लोगों से जुड़ी बहुस्तरीय समस्याओं के क्षणिक विश्लेषण के लिए डीजीटीडी पद्धति व्यापक रूप से प्रयुक्त की जाती है।[13][14]
बहुसंकल्प समय-डोमेन
एमआरटीडी छोटा लहर विश्लेषण के आधार पर परिमित अंतर समय डोमेन विधि (एफडीटीडी) का एक अनुकूली विकल्प है।
परिमित तत्व विधि
परिमित तत्व विधि (एफईएम) का उपयोग आंशिक अंतर समीकरणों (पीडीई) और अभिन्न समीकरणों के अनुमानित समाधान को खोजने के लिए किया जाता है। समाधान दृष्टिकोण या तो टाइम डेरिवेटिव्स को पूरी तरह से समाप्त करने (स्थिर स्थिति की समस्याओं) पर आधारित है, या पीडीई को समकक्ष सामान्य अंतर समीकरण में प्रस्तुत करना है, जिसे बाद में मानक तकनीकों जैसे परिमित अंतर आदि का उपयोग करके हल किया जाता है।
आंशिक अंतर समीकरणों को हल करने में, प्राथमिक चुनौती एक समीकरण बनाना है जो अध्ययन किए जाने वाले समीकरण का अनुमान लगाता है, लेकिन जो संख्यात्मक रूप से स्थिर है, जिसका अर्थ है कि इनपुट डेटा और मध्यवर्ती गणनाओं में त्रुटियां परिणामी आउटपुट के अर्थ को संचित और नष्ट नहीं करती हैं। ऐसा करने के कई तरीके हैं, विभिन्न फायदे और नुकसान के साथ। जटिल डोमेन पर आंशिक अंतर समीकरणों को हल करने के लिए परिमित तत्व विधि एक अच्छा विकल्प है या जब पूरे डोमेन में वांछित सटीकता भिन्न होती है।
परिमित एकीकरण तकनीक
परिमित एकीकरण तकनीक (एफआईटी) समय और आवृत्ति डोमेन में विद्युत चुम्बकीय क्षेत्र की समस्याओं को संख्यात्मक रूप से हल करने के लिए एक स्थानिक विवेकीकरण योजना है। यह आवेश और ऊर्जा के संरक्षण जैसे निरंतर समीकरणों के बुनियादी सामयिक गुणों को संरक्षित करता है। एफआईटी को 1977 में थॉमस वेइलैंड द्वारा प्रस्तावित किया गया था और वर्षों से इसे लगातार बढ़ाया गया है।[15] यह विधि विद्युत चुम्बकीय (स्थैतिक से उच्च आवृत्ति तक) और ऑप्टिक अनुप्रयोगों की पूरी श्रृंखला को कवर करती है और कंप्यूटर सिमुलेशन प्रौद्योगिकी (सीएसटी एजी) द्वारा विकसित वाणिज्यिक सिमुलेशन टूल सीएसटी स्टूडियो सूट और निम्बिक द्वारा विकसित इलेक्ट्रोमैग्नेटिक सिमुलेशन समाधान का आधार है।
इस दृष्टिकोण का मूल विचार मैक्सवेल समीकरणों को कंपित ग्रिडों के एक सेट पर अभिन्न रूप में प्रयुक्त करना है। यह विधि ज्यामितीय मॉडलिंग और सीमा से निपटने में उच्च लचीलेपन के साथ-साथ मनमाना सामग्री वितरण और असमदिग्वर्ती, गैर-रैखिकता और फैलाव जैसे भौतिक गुणों को सम्मिलित करने के कारण सामने आती है। इसके अलावा, एक स्पष्ट समय एकीकरण योजना (जैसे लीप-फ्रॉग-स्कीम) के संयोजन के साथ एक सतत दोहरी लंबकोणीय ग्रिड (जैसे कार्टेशियन ग्रिड) का उपयोग गणना और मेमोरी-कुशल एल्गोरिदम की ओर जाता है जो विशेष रूप से रेडियो आवृत्ति में क्षणिक क्षेत्र विश्लेषण के लिए अनुकूलित होते हैं। (आरएफ) अनुप्रयोगों।
छद्म वर्णक्रमीय समय डोमेन
मैक्सवेल के समीकरणों के लिए मार्चिंग-इन-टाइम कम्प्यूटेशनल तकनीकों का यह वर्ग विद्युत और चुंबकीय क्षेत्र वेक्टर घटकों के स्थानिक डेरिवेटिव की गणना करने के लिए असतत फूरियर या असतत चेबीशेव रूपांतरण का उपयोग करता है जो 2-डी ग्रिड या 3-डी जाली में व्यवस्थित होते हैं। यूनिट सेल। पीएसटीडी एफडीटीडी के सापेक्ष नगण्य संख्यात्मक चरण वेग अनिसोट्रॉपी त्रुटियों का कारण बनता है, और इसलिए बहुत अधिक विद्युत आकार की समस्याओं को मॉडल करने की स्वीकृति देता है।[16]
छद्म वर्णक्रमीय स्थानिक डोमेन
पीएसएसडी मैक्सवेल के समीकरणों को एक चुनी हुई स्थानिक दिशा में आगे प्रचारित करके हल करता है। इसलिए खेतों को समय के कार्य के रूप में और (संभवतः) किसी भी अनुप्रस्थ स्थानिक आयाम के रूप में रखा जाता है। विधि छद्म वर्णक्रमीय है क्योंकि एफएफटी की सहायता से आवृत्ति डोमेन में अस्थायी डेरिवेटिव की गणना की जाती है। चूंकि क्षेत्र समय के कार्यों के रूप में आयोजित किए जाते हैं, यह प्रसार माध्यम में मनमाने ढंग से फैलाव को न्यूनतम प्रयास के साथ तेजी से और सटीक रूप से तैयार करने में सक्षम बनाता है।[17] हालांकि, अंतरिक्ष में आगे बढ़ने का विकल्प (समय के बजाय) इसके साथ कुछ सूक्ष्मताएं लाता है, खासकर अगर प्रतिबिंब महत्वपूर्ण हैं।[18]
ट्रांसमिशन लाइन आव्यूह
ट्रांसमिशन लाइन आव्यूह विधि (टीएलएम) को कई तरीकों से तैयार किया जा सकता है, जैसे कि एक सर्किट सॉल्वर (ala SPICE, HSPICE, et al।) द्वारा सीधे लुम्प्ड तत्वों के प्रत्यक्ष सेट के रूप में, तत्वों के कस्टम नेटवर्क के रूप में या बिखरने वाला आव्यूह दृष्टिकोण के माध्यम से। टीएलएम क्षमताओं में एफडीटीडी के समान एक बहुत ही लचीली विश्लेषण रणनीति है, हालांकि एफडीटीडी इंजन के साथ अधिक कोड उपलब्ध होते हैं।
स्थानीय रूप से एक आयामी
यह एक निहित विधि है। इस पद्धति में, द्वि-आयामी मामले में, मैक्सवेल समीकरणों की गणना दो चरणों में की जाती है, जबकि त्रि-आयामी मामले में मैक्सवेल समीकरणों को तीन स्थानिक निर्देशांक दिशाओं में विभाजित किया जाता है। त्रि-आयामी एलओडी-एफडीटीडी विधि की स्थिरता और फैलाव विश्लेषण पर विस्तार से चर्चा की गई है।[19][20]
अन्य तरीके
ईजेनमोड विस्तार
ईजिन मोड विस्तार (EME) विद्युत चुम्बकीय प्रसार का अनुकरण करने के लिए एक कठोर द्वि-दिशात्मक तकनीक है जो विद्युत चुम्बकीय क्षेत्रों के स्थानीय ईजिन मोड आधार सेट में अपघटन पर निर्भर करता है। प्रत्येक स्थानीय क्रॉस-सेक्शन में मैक्सवेल के समीकरणों को हल करके ईजेनमोड्स पाए जाते हैं। ईजिन मोड विस्तार मैक्सवेल के समीकरणों को 2D और 3D में हल कर सकता है और एक पूर्ण सदिश समाधान प्रदान कर सकता है, बशर्ते कि मोड सॉल्वर सदिश हों। यह ऑप्टिकल वेवगाइड्स के मॉडलिंग के लिए एफडीटीडी पद्धति की तुलना में बहुत मजबूत लाभ प्रदान करता है, और यह फाइबर ऑप्टिक्स और सिलिकॉन फोटोनिक्स उपकरणों के मॉडलिंग के लिए एक लोकप्रिय उपकरण है।
भौतिक प्रकाशिकी
भौतिक प्रकाशिकी (पीओ) एक उच्च आवृत्ति सन्निकटन (लघु-तरंग दैर्ध्य सन्निकटन) का नाम है जो सामान्यतः प्रकाशिकी, विद्युत इंजीनियरिंग और अनुप्रयुक्त भौतिकी में उपयोग किया जाता है। यह ज्यामितीय प्रकाशिकी के बीच एक मध्यवर्ती विधि है, जो तरंग प्रभावों की उपेक्षा करती है, और पूर्ण तरंग विद्युत चुंबकत्व, जो एक सटीक सिद्धांत है। भौतिक शब्द का अर्थ है कि यह ज्यामितीय प्रकाशिकी की तुलना में अधिक भौतिक है और यह नहीं कि यह एक सटीक भौतिक सिद्धांत है।
सन्निकटन में सतह पर क्षेत्र का अनुमान लगाने के लिए किरण प्रकाशिकी का उपयोग करना और फिर संचरित या बिखरे हुए क्षेत्र की गणना करने के लिए सतह पर उस क्षेत्र को एकीकृत करना सम्मिलित है। यह बोर्न सन्निकटन से मिलता-जुलता है, जिसमें समस्या के विवरण को गड़बड़ी सिद्धांत के रूप में माना जाता है।
विवर्तन का एकसमान सिद्धांत
विवर्तन का एकसमान सिद्धांत (यूटीडी) एक ही बिंदु पर एक से अधिक आयामों में विद्युतीय रूप से छोटी असांतत्यता या विच्छिन्नता से विद्युत चुम्बकीय विकिरण बिखरने की समस्याओं को हल करने के लिए एक उच्च आवृत्ति विधि है।
विवर्तन का एकसमान सिद्धांत निकट और दूर के क्षेत्र विद्युत चुम्बकीय क्षेत्रों को अर्ध ऑप्टिकल के रूप में अनुमानित करता है और प्रत्येक विवर्तक वस्तु-स्रोत संयोजन के लिए विवर्तन गुणांक निर्धारित करने के लिए किरण विवर्तन का उपयोग करता है। इन गुणांकों का उपयोग विवर्तन बिंदु से दूर प्रत्येक दिशा के लिए क्षेत्र की ताकत और चरण (तरंगों) की गणना करने के लिए किया जाता है। फिर इन क्षेत्रों को घटना क्षेत्रों और परिलक्षित क्षेत्रों में जोड़ा जाता है ताकि कुल समाधान प्राप्त किया जा सके।
सत्यापन
सत्यापन विद्युत चुम्बकीय सिमुलेशन उपयोगकर्ताओं का सामना करने वाले प्रमुख मुद्दों में से एक है। उपयोगकर्ता को इसके सिमुलेशन के वैधता डोमेन को समझना और मास्टर करना चाहिए। माप यह है कि परिणाम वास्तविकता से कितनी दूर हैं?
इस प्रश्न का उत्तर देने में तीन चरण सम्मिलित हैं: सिमुलेशन परिणामों और विश्लेषणात्मक सूत्रीकरण के बीच तुलना, कोड के बीच क्रॉस-तुलना, और माप के साथ सिमुलेशन परिणामों की तुलना।
सिमुलेशन परिणाम और विश्लेषणात्मक सूत्रीकरण के बीच तुलना
उदाहरण के लिए, विश्लेषणात्मक सूत्र के साथ प्लेट के रडार क्रॉस सेक्शन के मूल्य का आकलन करना:
=== कोड === के बीच क्रॉस-तुलना एक उदाहरण उनके वैधता डोमेन में क्षणों की विधि और स्पर्शोन्मुख विधियों से परिणामों की क्रॉस तुलना है।[21]
माप के साथ सिमुलेशन परिणामों की तुलना
माप और अनुकरण के बीच तुलना करके अंतिम सत्यापन चरण बनाया जाता है। उदाहरण के लिए, आरसीएस गणना[22] और माप[23] 35 GHz पर किसी जटिल धात्विक वस्तु का। गणना किनारों के लिए GO, PO और PTD को प्रयुक्त करती है।
सत्यापन प्रक्रिया स्पष्ट रूप से प्रकट कर सकती है कि प्रायोगिक सेटअप और सिमुलेशन वातावरण में इसके प्रजनन के बीच अंतर के द्वारा कुछ अंतरों को समझाया जा सकता है।[24]
लाइट स्कैटरिंग कोड
इलेक्ट्रोमैग्नेटिक स्कैटरिंग समस्याओं को हल करने के लिए अब कई कुशल कोड हैं। वे इस प्रकार सूचीबद्ध हैं:
- असतत द्विध्रुवीय सन्निकटन कोड,
- सिलेंडर द्वारा विद्युत चुम्बकीय बिखरने के लिए कोड,
- क्षेत्रों द्वारा विद्युत चुम्बकीय बिखरने के लिए कोड।
समाधान जो विश्लेषणात्मक हैं, जैसे क्षेत्रों या सिलेंडरों द्वारा बिखरने के लिए मी समाधान का उपयोग अधिक सम्मिलित तकनीकों को मान्य करने के लिए किया जा सकता है।
यह भी देखें
- ईएम सिमुलेशन सॉफ्टवेयर
- विश्लेषणात्मक नियमितीकरण
- कम्प्यूटेशनल भौतिकी
- विद्युत चुम्बकीय क्षेत्र सॉल्वर
- विद्युत चुम्बकीय तरंग समीकरण
- परिमित-अंतर समय-डोमेन विधि
- परिमित-अंतर आवृत्ति-डोमेन
- माई सिद्धांत
- भौतिक प्रकाशिकी
- कठोर युग्मित-लहर विश्लेषण
- अंतरिक्ष मानचित्रण
- विवर्तन का एकसमान सिद्धांत
- शूटिंग और उछलती किरणें
संदर्भ
- ↑ 1.0 1.1 David B. Davidson, Computational Electromagnetics for RF and Microwave Engineering, Second Edition, Cambridge University Press, 2010
- ↑ Roger F. Harrington (1968). Field Computation by Moment Methods. Latest printing by IEEE Press in 1993, ISBN 0780310144.
- ↑ Greengard, L; Rokhlin, V (1987). "कण सिमुलेशन के लिए एक तेज़ एल्गोरिदम" (PDF). Journal of Computational Physics. Elsevier BV. 73 (2): 325–348. Bibcode:1987JCoPh..73..325G. doi:10.1016/0021-9991(87)90140-9. ISSN 0021-9991. Archived (PDF) from the original on August 1, 2019.
- ↑ Rokhlin, V (1985). "शास्त्रीय संभावित सिद्धांत के अभिन्न समीकरणों का त्वरित समाधान". Journal of Computational Physics. Elsevier BV. 60 (2): 187–207. Bibcode:1985JCoPh..60..187R. doi:10.1016/0021-9991(85)90002-6. ISSN 0021-9991.
- ↑ Engheta, N.; Murphy, W.D.; Rokhlin, V.; Vassiliou, M.S. (1992). "इलेक्ट्रोमैग्नेटिक स्कैटरिंग समस्याओं के लिए फास्ट मल्टीपोल मेथड (FMM)।". IEEE Transactions on Antennas and Propagation. Institute of Electrical and Electronics Engineers (IEEE). 40 (6): 634–641. Bibcode:1992ITAP...40..634E. doi:10.1109/8.144597. ISSN 0018-926X.
- ↑ Ergin, A.Arif; Shanker, Balasubramaniam; Michielssen, Eric (1998). "विकर्ण अनुवाद ऑपरेटरों का उपयोग करके तीन आयामी क्षणिक तरंग क्षेत्रों का तेजी से मूल्यांकन". Journal of Computational Physics. Elsevier BV. 146 (1): 157–180. Bibcode:1998JCoPh.146..157E. doi:10.1006/jcph.1998.5908. ISSN 0021-9991.
- ↑ Partial Element Equivalent Circuit (PEEC) homepage
- ↑ Stumpf, M: Time-Domain Electromagnetic Reciprocity in Antenna Modeling, Piscataway, NJ: IEEE Press--Wiley (2020).
- ↑ Stumpf, M. (2021). "एक पतली कंडक्टिंग शीट के ऊपर एक ट्रांसमिशन लाइन की क्षणिक प्रतिक्रिया - मोमेंट्स के कैग्नियार्ड-डीहूप विधि पर आधारित एक संख्यात्मक मॉडल". IEEE Antennas Wireless Propag. Lett. Institute of Electrical and Electronics Engineers (IEEE). 20 (9): 1829–1833. Bibcode:2021IAWPL..20.1829S. doi:10.1109/LAWP.2021.3098623. ISSN 1548-5757. S2CID 237403278..
- ↑ Stumpf, M: Metasurface Electromagnetics: The Cagniard-DeHoop Time-Domain Approach, London, UK: IET (2022).
- ↑ Stumpf, M. (2021). "Pulsed electromagnetic scattering by metasurfaces -- A numerical solution based on the Cagniard–DeHoop Method of Moments". IEEE Trans. Antennas Propag. Institute of Electrical and Electronics Engineers (IEEE). 69 (11): 7761–7770. Bibcode:2021ITAP...69.7761S. doi:10.1109/TAP.2021.3076342. ISSN 1558-2221. S2CID 235844966.
- ↑ Mohammadian, Alireza H.; Shankar, Vijaya; Hall, William F. (1991). "टाइम-डोमेन परिमित-मात्रा विवेकीकरण प्रक्रिया का उपयोग करके विद्युत चुम्बकीय बिखरने और विकिरण की गणना". Computer Physics Communications. Elsevier BV. 68 (1–3): 175–196. Bibcode:1991CoPhC..68..175M. doi:10.1016/0010-4655(91)90199-u. ISSN 0010-4655.
- ↑ Tobón, Luis E.; Ren, Qiang; Liu, Qing Huo (February 2015). "A new efficient 3D Discontinuous Galerkin Time Domain (DGTD) method for large and multiscale electromagnetic simulations". Journal of Computational Physics. 283: 374–387. Bibcode:2015JCoPh.283..374T. doi:10.1016/j.jcp.2014.12.008. ISSN 0021-9991.
- ↑ Mai, W.; Hu, J.; Li, P.; Zhao, H. (October 2017). "An Efficient and Stable 2-D/3-D Hybrid Discontinuous Galerkin Time-Domain Analysis With Adaptive Criterion for Arbitrarily Shaped Antipads in Dispersive Parallel-Plate Pair". IEEE Transactions on Microwave Theory and Techniques. 65 (10): 3671–3681. Bibcode:2017ITMTT..65.3671M. doi:10.1109/TMTT.2017.2690286. ISSN 0018-9480. S2CID 43188111.
- ↑ Weiland, T. (1977). "छह-घटक क्षेत्रों के लिए मैक्सवेल के समीकरणों के समाधान के लिए एक विवेक विधि". Archiv für Elektronik und Uebertragungstechnik (in Deutsch). 31 (3): 116–120. Bibcode:1977ArElU..31..116W.
- ↑ For a recent comprehensive summary of PSTD techniques for Maxwell's equations, see Q. Liu and G. Zhao "Advances in PSTD Techniques," Chapter 17 in Computational Electrodynamics: The Finite-Difference Time-Domain Method, A. Taflove and S. C. Hagness, eds., Boston: Artech House, 2005.
- ↑ Tyrrell, J. C. A.; Kinsler, P.; New, G. H. C. (2005-05-10). "Pseudospectral spatial-domain: a new method for nonlinear pulse propagation in the few-cycle regime with arbitrary dispersion". Journal of Modern Optics. Informa UK Limited. 52 (7): 973–986. Bibcode:2005JMOp...52..973T. doi:10.1080/09500340512331334086. ISSN 0950-0340. S2CID 121604760.
- ↑ Kinsler, Paul (2010-01-25). "न्यूनतम सन्निकटन के साथ ऑप्टिकल पल्स प्रसार". Physical Review A. 81 (1): 013819. arXiv:0810.5689. Bibcode:2010PhRvA..81a3819K. doi:10.1103/physreva.81.013819. ISSN 1050-2947.
- ↑ Ahmed, I. (2008). "तीन आयामी बिना शर्त स्थिर LOD-FDTD विधि का विकास". IEEE Transactions on Antennas and Propagation. Institute of Electrical and Electronics Engineers (IEEE). 56 (11): 3596–3600. Bibcode:2008ITAP...56.3596A. doi:10.1109/tap.2008.2005544. ISSN 0018-926X. S2CID 31351974.
- ↑ Ahmed, Iftikhar; Chua, Eng-Kee; Li, Er-Ping (2010). "बिना शर्त स्थिर तीन आयामी LOD-FDTD विधि का संख्यात्मक फैलाव विश्लेषण". IEEE Transactions on Antennas and Propagation. Institute of Electrical and Electronics Engineers (IEEE). 58 (12): 3983–3989. Bibcode:2010ITAP...58.3983A. doi:10.1109/tap.2010.2078481. ISSN 0018-926X. S2CID 9987649.
- ↑ As an illustration, the company OKTAL-SE made common development and cross comparison with the French research institute ONERA, comparing Method of Moment and Asymptotic methods. The cross comparison helped the validation process of the SE-RAY-EM code of OKTAL-SE. Illustration[dead link] of the comparison between the SE-RAY-EM code and the ONERA reference code (right image).
- ↑ SE-RAY-EM
- ↑ FGAN-FHR
- ↑ full article
अग्रिम पठन
- R. F. Harrington (1993). Field Computation by Moment Methods. Wiley-IEEE Press. ISBN 978-0-7803-1014-8.
- W. C. Chew; J.-M. Jin; E. Michielssen; J. Song (2001). Fast and Efficient Algorithms in Computational Electromagnetics. Artech House Publishers. ISBN 978-1-58053-152-8.
- J. Jin (2002). The Finite Element Method in Electromagnetics, 2nd. ed. Wiley-IEEE Press. ISBN 978-0-471-43818-2.
- Allen Taflove and Susan C. Hagness (2005). Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. Artech House Publishers. ISBN 978-1-58053-832-9.