स्थिर बहुपद

From Vigyanwiki
Revision as of 11:35, 29 March 2023 by alpha>Indicwiki (Created page with "एक [[अंतर समीकरण]] या अंतर समीकरण के विशेषता समीकरण (कैलकुलस) के संद...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

एक [[अंतर समीकरण]] या अंतर समीकरण के विशेषता समीकरण (कैलकुलस) के संदर्भ में, एक बहुपद को स्थिर कहा जाता है यदि या तो:

पहली स्थिति निरंतर-समय रैखिक प्रणालियों के लिए स्थिरता सिद्धांत प्रदान करती है, और दूसरा मामला स्थिरता से संबंधित है असतत-समय रैखिक प्रणालियों की। पहली संपत्ति के साथ एक बहुपद को कभी-कभी हर्विट्ज बहुपद कहा जाता है और दूसरी संपत्ति के साथ शूर बहुपद कहा जाता है। स्थिर बहुपद नियंत्रण सिद्धांत और गणितीय सिद्धांत में उत्पन्न होते हैं अंतर और अंतर समीकरणों की। एक रैखिक, समय-अपरिवर्तनीय प्रणाली (एलटीआई सिस्टम सिद्धांत देखें) को बीआईबीओ स्थिरता कहा जाता है यदि प्रत्येक बाध्य इनपुट बाध्य आउटपुट उत्पन्न करता है। एक रैखिक प्रणाली बीआईबीओ स्थिर है यदि इसकी विशेषता बहुपद स्थिर है। हर्विट्ज स्थिर होना आवश्यक है यदि सिस्टम निरंतर समय में है और शूर स्थिर है यदि यह असतत समय में है। व्यवहार में, स्थिरता कई स्थिरता मानदंडों में से किसी एक को लागू करके निर्धारित की जाती है।

गुण

  • राउथ-हर्विट्ज प्रमेय यह निर्धारित करने के लिए एक एल्गोरिथ्म प्रदान करता है कि क्या दिया गया बहुपद हर्विट्ज़ स्थिर है, जो कि राउथ-हर्विट्ज स्थिरता मानदंड में लागू किया गया है।
  • यह जांचने के लिए कि क्या दिया गया बहुपद P (बहुपद d की डिग्री का) शूर स्थिर है, यह इस प्रमेय को रूपांतरित बहुपद पर लागू करने के लिए पर्याप्त है
मोबियस परिवर्तन के बाद प्राप्त किया गया जो ओपन यूनिट डिस्क के लिए बाएं आधे-प्लेन को मैप करता है: पी शूर स्थिर है अगर और केवल अगर क्यू हर्विट्ज़ स्थिर है और . उच्च डिग्री बहुपदों के लिए इस मानचित्रण में शामिल अतिरिक्त संगणना को शूर-कॉन परीक्षण, जूरी स्थिरता मानदंड या बिस्ट्रिट्ज स्थिरता मानदंड द्वारा शूर स्थिरता का परीक्षण करके टाला जा सकता है।
  • आवश्यक शर्त: एक हर्विट्ज़ स्थिर बहुपद (वास्तविक संख्या गुणांक के साथ) में एक ही चिह्न के गुणांक होते हैं (या तो सभी सकारात्मक या सभी नकारात्मक)।
  • पर्याप्त स्थिति: एक बहुपद (वास्तविक) गुणांक के साथ ऐसा है
शूर स्थिर है।
  • उत्पाद नियम: दो बहुपद एफ और जी स्थिर हैं (एक ही प्रकार के) अगर और केवल अगर उत्पाद एफजी स्थिर है।
  • हैडमार्ड उत्पाद: दो हर्विट्ज़ स्थिर बहुपदों का हैडमार्ड (गुणांक-वार) उत्पाद फिर से हर्विट्ज़ स्थिर है।[1]


उदाहरण

  • शूर स्थिर है क्योंकि यह पर्याप्त स्थिति को संतुष्ट करता है;
  • शूर स्थिर है (क्योंकि इसकी सभी जड़ें 0 के बराबर हैं) लेकिन यह पर्याप्त स्थिति को संतुष्ट नहीं करता है;
  • हर्विट्ज़ स्थिर नहीं है (इसकी जड़ें -1 और 2 हैं) क्योंकि यह आवश्यक शर्त का उल्लंघन करता है;
  • हर्विट्ज़ स्थिर है (इसकी जड़ें -1 और -2 हैं)।
  • बहुपद (सकारात्मक गुणांक के साथ) न तो हर्विट्ज़ स्थिर है और न ही शूर स्थिर। इसकी जड़ें चार आदिम एकता की पांचवीं जड़ हैं
यहां ध्यान दें
यह शूर स्थिरता के लिए एक सीमा का मामला है क्योंकि इसकी जड़ें यूनिट सर्कल पर स्थित हैं। उदाहरण यह भी दर्शाता है कि हर्विट्ज़ स्थिरता के लिए ऊपर बताई गई आवश्यक (सकारात्मकता) स्थितियाँ पर्याप्त नहीं हैं।

यह भी देखें

संदर्भ

  1. Garloff, Jürgen; Wagner, David G. (1996). "स्थिर बहुपदों के हैडमार्ड गुणनफल स्थिर होते हैं". Journal of Mathematical Analysis and Applications (in English). 202 (3): 797–809. doi:10.1006/jmaa.1996.0348.


बाहरी संबंध