रासायनिक क्षमता

From Vigyanwiki
Revision as of 00:07, 12 April 2023 by Indicwiki (talk | contribs) (10 revisions imported from alpha:रासायनिक_क्षमता)

ऊष्मप्रवैगिकी में, किसी प्रजाति की रासायनिक क्षमता वह ऊर्जा है जिसे दी गई प्रजातियों के कण संख्या में परिवर्तन के कारण अवशोषित या जारी किया जा सकता है, जैसे रासायनिक प्रतिक्रिया या चरण संक्रमण में। एक मिश्रण में प्रजाति की रासायनिक क्षमता को थर्मोडायनामिक प्रणाली के थर्मोडायनामिक मुक्त ऊर्जा के परिवर्तन की दर के रूप में परिभाषित किया जाता है, जो कि प्रणाली में जोड़े जाने वाले प्रजातियों के परमाणुओं या अणुओं की संख्या में परिवर्तन के संबंध में है। इस प्रकार, यह प्रजातियों की मात्रा के संबंध में मुक्त ऊर्जा का आंशिक व्युत्पन्न है, मिश्रण में अन्य सभी प्रजातियों की सांद्रता स्थिर रहती है। जब तापमान और दबाव दोनों को स्थिर रखा जाता है, और कणों की संख्या मोल्स में व्यक्त की जाती है, तो रासायनिक क्षमता आंशिक मोलर सांद्रता गिब्स मुक्त ऊर्जा होती है।[1][2] रासायनिक संतुलन या चरण संतुलन में, रासायनिक क्षमता और स्टोइकोमेट्रिक गुणांक के उत्पाद का कुल योग शून्य है, क्योंकि मुक्त ऊर्जा न्यूनतम है।[3][4][5] प्रसार संतुलन में प्रणाली में, किसी भी रासायनिक प्रजाति की रासायनिक क्षमता पूरे प्रणाली में समान रूप से समान होती है।[6]

अर्धचालक भौतिकी में, शून्य निरपेक्ष तापमान पर इलेक्ट्रॉनों की एक प्रणाली की रासायनिक क्षमता को फर्मी ऊर्जा के रूप में जाना जाता है।[7]



अवलोकन

कण उच्च रासायनिक क्षमता से कम रासायनिक क्षमता की ओर बढ़ते हैं क्योंकि इससे मुक्त ऊर्जा कम हो जाती है। इस प्रकार रासायनिक क्षमता भौतिकी में गुरुत्वाकर्षण क्षमता जैसे "क्षमता" का सामान्यीकरण है। जब गेंद पहाड़ी से लुढ़कती है, तो यह उच्च गुरुत्वाकर्षण क्षमता (उच्च आंतरिक ऊर्जा इस प्रकार कार्य के लिए उच्च क्षमता) से कम गुरुत्वाकर्षण क्षमता (निम्न आंतरिक ऊर्जा) की ओर बढ़ रही है। उसी प्रकार, जैसे अणु चलते हैं, प्रतिक्रिया करते हैं, घुलते हैं, पिघलते हैं, आदि, वे हमेशा स्वाभाविक रूप से उच्च रासायनिक क्षमता से कम संख्या में जाने के लिए कण संख्या को बदलते हैं, जो कि रासायनिक क्षमता के लिए संयुग्म चर (थर्मोडायनामिक्स) है।

एक सरल उदाहरण एक सजातीय वातावरण में तनु अणुओं के आणविक प्रसार की प्रणाली है। इस प्रणाली में, अणु उच्च सांद्रता वाले क्षेत्रों से कम सांद्रता वाले क्षेत्रों में जाते हैं, अंत में, एकाग्रता हर जगह समान होती है। इसके लिए सूक्ष्म व्याख्या गैसों के गतिज सिद्धांत और अणुओं की यादृच्छिक गति पर आधारित है। चूंकि, रासायनिक क्षमता के संदर्भ में प्रक्रिया का वर्णन करना सरल है: किसी दिए गए तापमान के लिए, अणु में उच्च-सघनता वाले क्षेत्र में उच्च रासायनिक क्षमता होती है और कम सांद्रता वाले क्षेत्र में कम रासायनिक क्षमता होती है। उच्च रासायनिक क्षमता से निम्न रासायनिक क्षमता तक अणुओं का संचलन मुक्त ऊर्जा की रिहाई के साथ होता है। इसलिए, यह सहज प्रक्रिया है।

एक और उदाहरण, एकाग्रता पर आधारित नहीं किन्तु चरण पर आधारित है, किन्तु 0 डिग्री सेल्सियस से ऊपर की प्लेट पर एक आइस क्यूब है। एक H2O अणु जो ठोस चरण (बर्फ) में होता है, उसमें पानी के अणु की तुलना में उच्च रासायनिक क्षमता होती है जो 0 डिग्री सेल्सियस से ऊपर तरल चरण (पानी) में होता है। जब कुछ बर्फ पिघलती है, तो H2O अणु ठोस से गर्म तरल में परिवर्तित हो जाते हैं जहां उनकी रासायनिक क्षमता कम होती है, इसलिए आइस क्यूब सिकुड़ जाता है। गलनांक के तापमान पर, 0 °C, पानी और बर्फ में रासायनिक क्षमता समान होती है; आइस क्यूब न तो बढ़ता है और न ही सिकुड़ता है, और प्रणाली थर्मोडायनामिक संतुलन में है।

एक कमजोर अम्ल HA (जैसे एसिटिक अम्ल, A = CH3COO−) के पृथक्करण की रासायनिक प्रतिक्रिया द्वारा एक तीसरा उदाहरण दिया गया है:

एक कमजोर अम्ल एचए (जैसे एसीटिक अम्ल , A = CH3COO−) के पृथक्करण (रसायन विज्ञान) की रासायनिक प्रतिक्रिया द्वारा एक तीसरा उदाहरण दिया गया है।:

HA ⇌ H+ + A

सिरके में एसिटिक अम्ल होता है। जब अम्ल के अणु अलग हो जाते हैं तो असंगठित अम्ल अणुओं (HA) की सांद्रता कम हो जाती है और उत्पाद आयनों (H+ और A−) की सांद्रता बढ़ जाती है। इस प्रकार HA की रासायनिक क्षमता घट जाती है और H+ और A− की रासायनिक क्षमता का योग बढ़ जाता है।

सिरके में एसिटिक अम्ल होता है। जब अम्ल के अणु अलग हो जाते हैं, तो अविघटित अम्ल अणुओं (HA) की सांद्रता कम हो जाती है और उत्पाद आयनों (H+ और A) की सांद्रता में वृद्धि हो जाती हैं। इस प्रकार HA की रासायनिक क्षमता घट जाती है और H+ और A की रासायनिक क्षमता का योग बढ़ जाता है। जब अभिकारकों और उत्पादों की रासायनिक क्षमता का योग बराबर होता है तो प्रणाली संतुलन पर होती है और आगे या पीछे की दिशा में आगे बढ़ने की प्रतिक्रिया की कोई प्रवृत्ति नहीं होती है। यह बताता है कि सिरका अम्लीय क्यों है, क्योंकि एसिटिक अम्ल कुछ सीमा तक अलग हो जाता है, हाइड्रोजन आयनों को घोल में छोड़ देता है।

गलनांक, क्वथनांक, वाष्पीकरण, घुलनशीलता, परासरण, विभाजन गुणांक, तरल-तरल निष्कर्षण और क्रोमैटोग्राफी सहित बहु-चरण संतुलन रसायन विज्ञान के कई पहलुओं में रासायनिक क्षमताएँ महत्वपूर्ण हैं। प्रत्येक स्थिति में किसी प्रजाति की रासायनिक क्षमता संतुलन पर प्रणाली के सभी चरणों में समान होती है।[6]

इलेक्ट्रोकैमिस्ट्री में, आयन हमेशा उच्च से निम्न रासायनिक क्षमता की ओर नहीं जाते हैं, किन्तु वे हमेशा उच्च से निम्न विद्युत रासायनिक क्षमता की ओर जाते हैं। विद्युत रासायनिक क्षमता आयन की गति पर सभी प्रभावों को पूरी तरह से चिह्नित करती है, चूंकि रासायनिक क्षमता में विद्युत बल को छोड़कर सब कुछ सम्मिलित होता है। (इस शब्दावली पर अधिक जानकारी के लिए नीचे देखें।)

थर्मोडायनामिक परिभाषा

रासायनिक क्षमता μi प्रजातियों की संख्या i (परमाणु, आणविक या परमाणु) को परिभाषित किया गया है, जैसा कि सभी गहन और व्यापक गुण मात्राएं, अनुभवजन्य संबंध मौलिक थर्मोडायनामिक संबंध द्वारा हैं। यह प्रतिवर्ती प्रक्रिया (ऊष्मप्रवैगिकी) और प्रतिवर्ती प्रक्रिया (ऊष्मप्रवैगिकी) अनंत प्रक्रियाओं दोनों के लिए है:[8]

जहाँ dU आंतरिक ऊर्जा U का अतिसूक्ष्म परिवर्तन है, dS एन्ट्रापी S का अतिसूक्ष्म परिवर्तन है, dV तापीय संतुलन में थर्मोडायनामिक प्रणाली के लिए आयतन (थर्मोडायनामिक्स) V का अतिसूक्ष्म परिवर्तन है, और dNi कण संख्या Ni का अतिसूक्ष्म परिवर्तन है जिसमे कणों के रूप में प्रजातियों की संख्या i को जोड़ा या घटाया जाता है। T पूर्ण तापमान है, S एन्ट्रापी है, P दबाव है, और V आयतन है। अन्य कार्य शर्तें, जैसे विद्युत, चुंबकीय या गुरुत्वाकर्षण क्षेत्रों को सम्मिलित किया जा सकता है।

उपरोक्त समीकरण से, रासायनिक क्षमता द्वारा दिया जाता है

ऐसा इसलिए है क्योंकि आंतरिक ऊर्जा U अवस्था फलन है, इसलिए यदि इसका अंतर उपस्थित है, तो अंतर U के स्वतंत्र चर x1, x2, … , xN के लिय एक त्रुटिहीन अंतर है। जैसे

संबंधित प्रजातियों के कण संख्या के संबंध में U के आंशिक व्युत्पन्न के रूप में रासायनिक क्षमता की यह अभिव्यक्ति संघनित पदार्थ भौतिकी प्रणालियों के लिए असुविधाजनक है। संघनित पदार्थ प्रणाली, जैसे कि रासायनिक समाधान, क्योंकि मात्रा को नियंत्रित करना कठिन है और कण जोड़े जाने पर एन्ट्रॉपी स्थिर होना कठिन है। एक अन्य थर्मोडायनामिक क्षमता: गिब्स मुक्त ऊर्जा में लेजेंड्रे परिवर्तन करके एक अधिक सुविधाजनक अभिव्यक्ति प्राप्त की जा सकती है। अंतर (के लिए और , उत्पाद नियम प्रायुक्त होता है) से और के लिए उपरोक्त अभिव्यक्ति का उपयोग करके, के लिए एक अंतर संबंध प्राप्त किया जाता है:

परिणामस्वरूप, परिणामों के लिए एक और अभिव्यक्ति:

और निरंतर तापमान और दबाव पर आयोजित प्रणाली की गिब्स मुक्त ऊर्जा में परिवर्तन सरल है

थर्मोडायनामिक संतुलन में, जब संबंधित प्रणाली निरंतर तापमान और दबाव पर होती है, किन्तु अपने बाहरी वातावरण के साथ कणों का आदान-प्रदान कर सकती है, गिब्स मुक्त ऊर्जा प्रणाली के लिए न्यूनतम होती है, अर्थात है। यह इस प्रकार है कि

इस समानता का उपयोग रासायनिक प्रतिक्रिया के लिए संतुलन स्थिरांक स्थापित करने का साधन प्रदान करता है।

थैलेपी की तरह U से अन्य थर्मोडायनामिक क्षमता में आगे लेजेंड्रे परिवर्तन करके और हेल्महोल्ट्ज़ मुक्त ऊर्जा , रासायनिक क्षमता के लिए भाव इनके संदर्भ में प्राप्त किए जा सकते हैं:

रासायनिक क्षमता के लिए ये विभिन्न रूप सभी समतुल्य हैं, जिसका अर्थ है कि उनकी भौतिक सामग्री समान है और विभिन्न भौतिक स्थितियों में उपयोगी हो सकती है।

अनुप्रयोग

गिब्स-डुहेम समीकरण उपयोगी है क्योंकि यह अलग-अलग रासायनिक क्षमता से संबंधित है। उदाहरण के लिए, बाइनरी मिश्रण में, निरंतर तापमान और दबाव पर, दो प्रतिभागियों A और B की रासायनिक क्षमता से संबंधित हैं

जहाँ , A के मोल्स की संख्या है और B के मोल्स की संख्या है। चरण या रासायनिक संतुलन का हर उदाहरण स्थिरांक की विशेषता है। उदाहरण के लिए, बर्फ के पिघलने की विशेषता तापमान है, जिसे गलनांक के रूप में जाना जाता है, जिस पर ठोस और तरल चरण दूसरे के साथ संतुलन में होते हैं। क्लैपेरॉन समीकरण का उपयोग करके चरण आरेख पर लाइनों की ढलानों को समझाने के लिए रासायनिक क्षमता का उपयोग किया जा सकता है, जो बदले में गिब्स-ड्यूहेम समीकरण से प्राप्त किया जा सकता है।[9] उनका उपयोग दबाव के अनुप्रयोग द्वारा गलनांक-बिंदु अवसाद जैसे संपार्श्विक गुणों की व्याख्या करने के लिए किया जाता है।[10] विलेय के लिए हेनरी का नियम राउल्ट के नियम से रासायनिक क्षमता का उपयोग करके विलायक के लिए प्राप्त किया जा सकता है।[11][12]


इतिहास

रासायनिक क्षमता का वर्णन सबसे पहले अमेरिकी इंजीनियर, रसायनज्ञ और गणितीय भौतिक विज्ञानी विलार्ड गिब्स ने किया था। उन्होंने इसे इस प्रकार परिभाषित किया:

अगर हाइड्रोस्टैटिक तनाव के स्टेट में किसी सजातीय द्रव्यमान में हम मानते हैं कि किसी भी पदार्थ की एक अतिसूक्ष्म मात्रा को जोड़ा जाना है, द्रव्यमान सजातीय रहता है और इसका एंट्रॉपी और आयतन अपरिवर्तित रहने पर, जोड़े गए पदार्थ की मात्रा से विभाजित द्रव्यमान के ऊर्जा की वृद्धि को माना जाने वाले द्रव्यमान में उस पदार्थ के लिए संभावना है।


गिब्स ने बाद में यह भी उल्लेख किया[citation needed] कि इस परिभाषा के प्रयोजनों के लिए, किसी भी रासायनिक तत्व या दिए गए अनुपात में तत्वों के संयोजन को पदार्थ माना जा सकता है, चाहे वह सजातीय शरीर के रूप में उपस्थित हो या न हो। प्रणाली की सीमा चुनने की यह स्वतंत्रता रासायनिक क्षमता को प्रणाली की विशाल श्रृंखला पर प्रायुक्त करने की अनुमति देती है। इस शब्द का उपयोग ऊष्मप्रवैगिकी और भौतिकी में परिवर्तन के समय से निकल रही किसी भी प्रणाली के लिए किया जा सकता है। रासायनिक क्षमता को आंशिक मोलर गिब्स ऊर्जा (आंशिक मोलर गुण भी देखें) भी कहा जाता है। रासायनिक क्षमता को ऊर्जा/कण या समकक्ष, ऊर्जा/मोल (इकाई) की इकाइयों में मापा जाता है।

अपने 1873 के पेपर ए मेथड ऑफ ज्योमेट्रिकल रिप्रेजेंटेशन ऑफ द थर्मोडायनामिक प्रॉपर्टीज ऑफ सब्सटेंस बाय मीन्स ऑफ सर्फेस (सतहों के माध्यम से पदार्थों के थर्मोडायनामिक गुणों के ज्यामितीय प्रतिनिधित्व की एक विधि) में, गिब्स ने अपने नए समीकरण के सिद्धांतों की प्रारंभिक रूपरेखा प्रस्तुत किया था, जो विभिन्न प्राकृतिक प्रक्रियाओं की प्रवृत्ति का अनुमान लगाने या अनुमान लगाने में सक्षम था जब निकायों या प्रणालियों को संपर्क में लाया जाता है। संपर्क में सजातीय पदार्थों की बातचीत का अध्ययन करके, अर्थात शरीर, रचना भाग ठोस, भाग तरल और भाग वाष्प में होने के कारण, और त्रि-आयामी आयतन-एन्ट्रॉपी-आंतरिक ऊर्जा ग्राफ का उपयोग करके, गिब्स संतुलन की तीन अवस्थाओं को निर्धारित करने में सक्षम थे, अर्थात् आवश्यक रूप से स्थिर , तटस्थ , और अस्थिर , और चाहे परिवर्तन हो या न हो। 1876 ​​में, गिब्स ने रासायनिक क्षमता की अवधारणा को प्रस्तुत करके इस संरचना पर निर्माण किया जिससे रासायनिक प्रतिक्रियाओं और निकायों की अवस्थाओं को ध्यान में रखा जा सके जो दूसरे से रासायनिक रूप से भिन्न हैं। उपरोक्त पेपर से अपने शब्दों में, गिब्स कहते हैं:

यदि हम किसी पदार्थ के लिए निरंतर दबाव P और तापमान T के माध्यम से घिरे होने पर थर्मोडायनामिक संतुलन की आवश्यक और पर्याप्त स्थिति को एक समीकरण में व्यक्त करना चाहते हैं, तो यह समीकरण लिखा जा सकता है:

जहाँ δ शरीर के अंगों की स्थिति में किसी भी भिन्नता से उत्पन्न भिन्नता को संदर्भित करता है, और (जब शरीर के विभिन्न भाग अलग-अलग अवस्थाओं में होते हैं) उस अनुपात में जिसमें शरीर को अलग-अलग अवस्थाओं के बीच विभाजित किया जाता है। स्थिर संतुलन की शर्त यह है कि कोष्ठक में अभिव्यक्ति का मान न्यूनतम होगा।

इस विवरण में, जैसा कि गिब्स द्वारा उपयोग किया गया है, ε शरीर की आंतरिक ऊर्जा को संदर्भित करता है, η शरीर की एन्ट्रापी को संदर्भित करता है, और ν शरीर का आयतन है।

विद्युत रासायनिक, आंतरिक, बाहरी और कुल रासायनिक क्षमता

ऊपर दी गई रासायनिक क्षमता की अमूर्त परिभाषा - पदार्थ के प्रति अतिरिक्त मोल मुक्त ऊर्जा में कुल परिवर्तन - को विशेष रूप से कुल रासायनिक क्षमता कहा जाता है।[13][14] यदि किसी प्रजाति के लिए दो स्थानों की कुल रासायनिक क्षमता अलग-अलग है, तो इसमें से कुछ बाहरी बल क्षेत्रों (विद्युत संभावित ऊर्जा, गुरुत्वाकर्षण संभावित ऊर्जा, आदि) से जुड़ी क्षमता के कारण हो सकते हैं, चूंकि शेष आंतरिक कारकों (घनत्व, तापमान, आदि)) के कारण होते है।[13] इसलिए, कुल रासायनिक क्षमता को आंतरिक रासायनिक क्षमता और बाहरी रासायनिक क्षमता में विभाजित किया जा सकता है:

जहाँ

अर्थात, बाहरी क्षमता विद्युत क्षमता, गुरुत्वाकर्षण क्षमता, आदि का योग है (जहाँ q और m प्रजातियों के आवेश और द्रव्यमान हैं, Vele और h क्रमशः विद्युत क्षमता[15] और कंटेनर की ऊंचाई, और जी मानक गुरुत्वाकर्षण है)। आंतरिक रासायनिक क्षमता में बाहरी क्षमता के अतिरिक्त बाकी सब कुछ सम्मिलित है, जैसे घनत्व, तापमान और तापीय धारिता। इस औपचारिकता को यह मानकर समझा जा सकता है कि किसी निकाय की कुल ऊर्जा, , दो भागों का योग है: एक आंतरिक ऊर्जा, , और बाहरी क्षेत्र के साथ प्रत्येक कण की बातचीत के कारण बाहरी ऊर्जा, के साथ परस्पर क्रिया के कारण होती है। पर लागू रासायनिक क्षमता की परिभाषा के लिए उपरोक्त अभिव्यक्ति देती है।

वाक्यांश रासायनिक क्षमता का अर्थ कभी-कभी कुल रासायनिक क्षमता होता है, किन्तु यह सार्वभौमिक नहीं है।[13] कुछ क्षेत्रों में, विशेष रूप से विद्युत रसायन विज्ञान, अर्धचालक भौतिकी और ठोस-राज्य भौतिकी में, रासायनिक क्षमता शब्द का अर्थ आंतरिक रासायनिक क्षमता है, चूंकि विद्युत रासायनिक क्षमता शब्द का उपयोग कुल रासायनिक क्षमता के लिए किया जाता है।[16][17][18][19][20]


कणों की प्रणाली

ठोस में इलेक्ट्रॉन

ठोस पदार्थों में इलेक्ट्रॉनों की रासायनिक क्षमता होती है, जिसे रासायनिक प्रजातियों की रासायनिक क्षमता के समान परिभाषित किया जाता है: मुक्त ऊर्जा में परिवर्तन जब इलेक्ट्रॉनों को जोड़ा जाता है या प्रणाली से हटा दिया जाता है। इलेक्ट्रॉनों के स्थिति में, रासायनिक क्षमता सामान्यतः प्रति मोल ऊर्जा के बजाय प्रति कण ऊर्जा में व्यक्त की जाती है, और प्रति कण ऊर्जा पारंपरिक रूप से इलेक्ट्रॉन वोल्ट (eV) की इकाइयों में दी जाती है।

रासायनिक क्षमता ठोस अवस्था भौतिकी में विशेष रूप से महत्वपूर्ण भूमिका निभाती है और कार्य फलन, फर्मी ऊर्जा और फर्मी स्तर की अवधारणाओं से निकटता से संबंधित है। उदाहरण के लिए, पी-टाइप सिलिकॉन की तुलना में एन-टाइप सिलिकॉन में इलेक्ट्रॉनों डोपिंग (अर्द्धचालक) इलेक्ट्रॉनों की उच्च आंतरिक रासायनिक क्षमता होती है। p-n जंक्शन डायोड में संतुलन पर रासायनिक क्षमता (आंतरिक रासायनिक क्षमता) p-प्रकार से n-प्रकार की ओर भिन्न होती है, चूंकि कुल रासायनिक क्षमता (विद्युत रासायनिक क्षमता, या, फर्मी स्तर) पूरे डायोड में स्थिर होती है।

जैसा कि ऊपर वर्णित है, रासायनिक क्षमता का वर्णन करते समय, किसी को क्या के सापेक्ष कहना पड़ता है। अर्धचालकों में इलेक्ट्रॉनों के स्थिति में, बैंड संरचना में कुछ सुविधाजनक बिंदु के सापेक्ष आंतरिक रासायनिक क्षमता अधिकांश निर्दिष्ट होती है, उदाहरण के लिए, चालन बैंड के नीचे। इसे कार्य फलन के रूप में ज्ञात मात्रा प्राप्त करने के लिए निर्वात के सापेक्ष भी निर्दिष्ट किया जा सकता है, चूंकि, कार्य फलन पूरी तरह सजातीय सामग्री पर भी सतह से सतह पर भिन्न होता है। दूसरी ओर, कुल रासायनिक क्षमता, सामान्यतः विद्युत जमीन के सापेक्ष निर्दिष्ट होती है।

परमाणु भौतिकी में, एक परमाणु में इलेक्ट्रॉनों की रासायनिक क्षमता कभी-कभी[21] परमाणु की वैद्युतीयऋणात्मकता का ऋणात्मक कहा जाता है। इसी प्रकार, रासायनिक संभावित समानता की प्रक्रिया को कभी-कभी वैद्युतीयऋणात्मकता समीकरण की प्रक्रिया के रूप में जाना जाता है। यह कनेक्शन मुल्लिकेन इलेक्ट्रोनऋणात्मकता स्केल से आता है। मुल्लिकेन वैद्युतीयऋणात्मकता में आयनीकरण क्षमता और इलेक्ट्रॉन बंधुता की ऊर्जावान परिभाषाओं को सम्मिलित करके, यह देखा जाता है कि मुल्लिकेन रासायनिक क्षमता इलेक्ट्रॉनों की संख्या के संबंध में इलेक्ट्रॉनिक ऊर्जा का परिमित अंतर सन्निकटन है।, अर्थात,


उप-परमाणु कण

हाल के वर्षों में,[when?] ऊष्मीय भौतिकी ने रासायनिक क्षमता की परिभाषा को कण भौतिकी और उससे जुड़ी प्रक्रियाओं में प्रणालियों पर प्रायुक्त किया है। उदाहरण के लिए, क्वार्क-ग्लूऑन प्लाज्मा या अन्य क्यूसीडी पदार्थ में, अंतरिक्ष में हर बिंदु पर फोटोन के लिए रासायनिक क्षमता, इलेक्ट्रॉनों के लिए रासायनिक क्षमता, बेरिऑन नंबर के लिए रासायनिक क्षमता, विद्युत आवेश और बहुत कुछ होता है।

फोटॉन के स्थिति में, फोटॉन बोसॉन हैं और बहुत आसानी से और तेजी से प्रकट या लुप्त हो सकते हैं। इसलिए, थर्मोडायनामिक संतुलन में, फोटॉनों की रासायनिक क्षमता हमेशा और हर जगह शून्य होती है। इसका कारण यह है कि यदि रासायनिक क्षमता कहीं शून्य से अधिक थी, तो उस क्षेत्र से फोटॉन अनायास लुप्त हो जाएंगे, जब तक कि रासायनिक क्षमता वापस शून्य नहीं हो जाती है; इसी प्रकार, यदि कहीं रासायनिक क्षमता शून्य से कम थी, तो फोटॉन अनायास तब तक प्रकट होते रहेंगे जब तक कि रासायनिक क्षमता शून्य पर वापस नहीं आ जाती। चूँकि यह प्रक्रिया बहुत तेज़ी से होती है (कम से कम, यह सघन आवेशित पदार्थ की उपस्थिति में तेज़ी से होती है), यह मान लेना सुरक्षित है कि फोटॉन रासायनिक क्षमता कभी भी शून्य से भिन्न नहीं होती है।

विद्युत आवेश भिन्न है क्योंकि यह संरक्षित है, अर्थात इसे न तो बनाया जा सकता है और न ही नष्ट किया जा सकता है। हालाँकि, यह फैल सकता है। बिजली का आवेश की रासायनिक क्षमता इस प्रसार को नियंत्रित करती है: इलेक्ट्रिक चार्ज, किसी भी अन्य चीज की तरह, उच्च रासायनिक क्षमता वाले क्षेत्रों से कम रासायनिक क्षमता वाले क्षेत्रों में फैल जाएगा।[22] अन्य संरक्षित मात्राएँ जैसे बेरिऑन संख्या समान होती हैं। वास्तव में, प्रत्येक संरक्षित मात्रा रासायनिक क्षमता से जुड़ी होती है और इसे बराबर करने के लिए फैलाने की समान प्रवृत्ति होती है।[23]

इलेक्ट्रॉनों के स्थिति में व्यवहार तापमान और संदर्भ पर निर्भर करता है। कम तापमान पर, कोई पॉज़िट्रॉन उपस्थित नहीं होने पर, इलेक्ट्रॉनों को न तो बनाया जा सकता है और न ही नष्ट किया जा सकता है। इसलिए, इलेक्ट्रॉन रासायनिक क्षमता है जो अंतरिक्ष में भिन्न हो सकती है, जिससे प्रसार हो सकता है। चूंकि, बहुत उच्च तापमान पर, इलेक्ट्रॉन और पॉज़िट्रॉन अनायास निर्वात (जोड़ी उत्पादन) से बाहर निकल सकते हैं, इसलिए इलेक्ट्रॉनों की रासायनिक क्षमता स्वयं संरक्षित मात्रा की रासायनिक क्षमता (इलेक्ट्रॉन माइनस पॉज़िट्रॉन) की तुलना में कम उपयोगी मात्रा बन जाती है।

बोस-आइंस्टीन आँकड़ों और फर्मी-डिराक आँकड़ों द्वारा क्रमशः बोसोन और फर्मियन की रासायनिक क्षमता कणों की संख्या और तापमान से संबंधित है।

आदर्श बनाम गैर-आदर्श समाधान

(बाएं) आदर्श [गलत तरीके से रैखिककृत] और (दाएं) वास्तविक समाधानों के समाधान में घटक i की रासायनिक क्षमता

सामान्यतः रासायनिक क्षमता को आदर्श योगदान और अतिरिक्त योगदान के योग के रूप में दिया जाता है:

एक आदर्श समाधान में, प्रजातियों i (μi) की रासायनिक क्षमता तापमान और दबाव पर निर्भर है।

μi0(T, P) को शुद्ध प्रजातियों की रासायनिक क्षमता के रूप में परिभाषित किया गया है। इस परिभाषा को देखते हुए, आदर्श समाधान में प्रजातियों की रासायनिक क्षमता है

जहाँ R गैस स्थिरांक है, और समाधान में निहित प्रजातियों का मोल अंश है। जब रासायनिक क्षमता नकारात्मक अनंत हो जाती है, किन्तु इससे गैर-भौतिक परिणाम नहीं होते हैं क्योंकि इसका अर्थ है कि प्रजाति मैं प्रणाली में उपस्थित नहीं है।

यह समीकरण मानता है कि केवल समाधान में निहित तिल अंश () पर निर्भर करता है। यह स्वयं और अन्य प्रजातियों [i-(j≠i)] के साथ प्रजातियों i के बीच अंतर-आण्विक संपर्क की उपेक्षा करता है। इसे γi के रूप में परिभाषित प्रजातियों i की गतिविधि के गुणांक में फैक्टरिंग करके ठीक किया जा सकता है। यह सुधार उत्पन्न होता है

उपरोक्त आलेख आदर्श और गैर-आदर्श स्थिति का बहुत ही मोटा चित्र प्रस्तुत करते हैं।

यह भी देखें

संदर्भ

  1. Atkins, Peter; de Paula, Julio (2006). Atkins' Physical Chemistry (8th ed.). Oxford University Press. ISBN 978-0-19-870072-2. Page references in this article refer specifically to the 7th or 8th edition of this book.
  2. Opacity, Walter F. Huebner, W. David Barfield, ISBN 1461487978, p. 105.
  3. Atkins (7th ed.), Section 9.2, p. 227.
  4. Baierlein, Ralph (April 2001). "मायावी रासायनिक क्षमता" (PDF). American Journal of Physics. 69 (4): 423–434. Bibcode:2001AmJPh..69..423B. doi:10.1119/1.1336839.
  5. Job, G.; Herrmann, F. (February 2006). "Chemical potential–a quantity in search of recognition" (PDF). European Journal of Physics. 27 (2): 353–371. Bibcode:2006EJPh...27..353J. CiteSeerX 10.1.1.568.9205. doi:10.1088/0143-0807/27/2/018. Archived from the original (PDF) on 2015-09-24. Retrieved 2009-02-12.
  6. 6.0 6.1 Atkins (7th ed.), Section 6.4, p. 141.
  7. Kittel, Charles; Herbert Kroemer (1980-01-15). ऊष्मीय भौतिकी (2nd ed.). W. H. Freeman. p. 357.
  8. Statistical Physics, F Mandl, (Wiley, London, 11971) ISBN 0 471 56658 6, page 88.
  9. Atkins (8th ed.), Section 4.1, p. 126.
  10. Atkins (8th ed.), Section 5.5, pp. 150–155.
  11. McQuarrie, D. A.; Simon, J. D. Physical Chemistry – A Molecular Approach, p. 968, University Science Books, 1997.
  12. Atkins (8th ed.), Section 5.3, pp. 143–145.
  13. 13.0 13.1 13.2 Thermal Physics by Kittel and Kroemer, second edition, page 124.
  14. Thermodynamics in Earth and Planetary Sciences by Jibamitra Ganguly, p. 240. This text uses "internal", "external", and "total chemical potential" as in this article.
  15. Mortimer, R. G. Physical Chemistry, 3rd ed., p. 352, Academic Press, 2008.
  16. Electrochemical Methods by Bard and Faulkner, 2nd edition, Section 2.2.4(a), 4–5.
  17. Electrochemistry at Metal and Semiconductor Electrodes, by Norio Sato, pages 4–5.
  18. Physics Of Transition Metal Oxides, by Sadamichi Maekawa, p. 323.
  19. The Physics of Solids: Essentials and Beyond, by Eleftherios N. Economou, page 140. In this text, total chemical potential is usually called "electrochemical potential", but sometimes just "chemical potential". The internal chemical potential is referred to by the unwieldy phrase "chemical potential in the absence of the [electric] field".
  20. Solid State Physics by Ashcroft and Mermin, page 257 note 36. Page 593 of the same book uses, instead, an unusual "flipped" definition, where "chemical potential" is the total chemical potential, which is constant in equilibrium, and "electrochemical potential" is the internal chemical potential; presumably this unusual terminology was an unintentional mistake.
  21. Morell, Christophe, Introduction to Density Functional Theory of Chemical Reactivity: The so-called Conceptual DFT Archived 2017-08-28 at the Wayback Machine, retrieved May 2016.
  22. Baierlein, Ralph (2003). ऊष्मीय भौतिकी. Cambridge University Press. ISBN 978-0-521-65838-6. OCLC 39633743.
  23. Hadrons and Quark-Gluon Plasma, by Jean Letessier, Johann Rafelski, p. 91.


बाहरी संबंध