आधार फलन
गणित में, आधार फलन एक फलन स्थान के लिए विशेष आधार (रैखिक बीजगणित) का अवयव है। फलन स्थान में प्रत्येक फलन (गणित) को आधार फलन के रैखिक संयोजन के रूप में दर्शाया जा सकता है, जैसे सदिश स्थान में प्रत्येक वेक्टर को सदिश स्थान के रैखिक संयोजन के रूप में दर्शाया जा सकता है।
संख्यात्मक विश्लेषण और सन्निकटन सिद्धांत में, आधार कार्यों को सम्मिश्रण कार्य भी कहा जाता है, क्योंकि प्रक्षेप में उनका उपयोग होता है: इस आवेदन में, आधार कार्यों का मिश्रण एक प्रक्षेपित कार्य प्रदान करता है (मिश्रण के आधार पर आधार कार्यों के मूल्यांकन के आधार पर डेटा अंक)।
आधार कार्यों का मिश्रण एक प्रक्षेपित कार्य प्रदान करता है
उदाहरण
Cω के लिए मोनोमियल आधार
विश्लेषणात्मक कार्य के सदिश स्थान के लिए एकपद आधार दिया गया है
बहुपदो के लिए मोनोमियल आधार
मोनोमियल आधार भी बहुपदों के सदिश स्थान के लिए आधार बनाता है। फलस्वरूप, हर बहुपद को इस रूप में लिखा जा सकता है कुछ के लिए , जो कि मोनोमियल्स का रैखिक संयोजन है।
L2[0,1] लिए फूरियर आधार
त्रिकोणमितीय फलन बंधे हुए डोमेन पर स्क्वायर-इंटीग्रेबल फलन के लिए (ऑर्थोनॉर्मलिटी) स्कॉडर आधार बनाते हैं। विशेष उदाहरण के रूप में संग्रह
यह भी देखें
- आधार (रैखिक बीजगणित) (हैमेल आधार)
- शाउडर आधार (बनच स्थान में)
- दोहरा आधार
- बायोर्थोगोनल प्रणाली (मार्कुशेविच आधार)
- आंतरिक-उत्पाद स्थान में ऑर्थोनॉर्मल आधार
- ओर्थोगोनल बहुपद
- फूरियर विश्लेषण और फूरियर श्रृंखला
- हार्मोनिक विश्लेषण
- ऑर्थोगोनल वेवलेट
- बायोर्थोगोनल वेवलेट
- रेडियल आधार फलन
- परिमित तत्व विश्लेषण#एक आधार चुनना|परिमित-तत्व (आधार)
- कार्यात्मक विश्लेषण
- सन्निकटन सिद्धांत
- संख्यात्मक विश्लेषण
संदर्भ
- Itô, Kiyosi (1993). Encyclopedic Dictionary of Mathematics (2nd ed.). MIT Press. p. 1141. ISBN 0-262-59020-4.