न्यूट्रॉन विकिरण

From Vigyanwiki
Revision as of 02:33, 22 March 2023 by alpha>Indicwiki (Created page with "{{Short description|Ionizing radiation that presents as free neutrons}} {{Science with neutrons}} न्यूट्रॉन विकिरण आयनकारी वि...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

न्यूट्रॉन विकिरण आयनकारी विकिरण का एक रूप है जो मुक्त न्यूट्रॉन कैप्चर रूप में प्रस्तुत करता है। विशिष्ट घटनाएं परमाणु विखंडन या परमाणु संलयन हैं जो मुक्त न्यूट्रॉन की रिहाई का कारण बनती हैं, जो तब न्यूट्रॉन नए न्यूक्लाइड बनाने के लिए अन्य परमाणुओं के परमाणु नाभिक के साथ कब्जा कर लेता है - जो आगे न्यूट्रॉन विकिरण को ट्रिगर कर सकता है। मुक्त न्यूट्रॉन अस्थिर होते हैं, मुक्त न्यूट्रॉन एक प्रोटॉन, एक इलेक्ट्रॉन, और एक इलेक्ट्रॉन_न्यूट्रिनो#इलेक्ट्रॉन_एंटीन्यूट्रिनो में क्षय होता है। मुक्त न्यूट्रॉन का औसत जीवनकाल 887 सेकंड (14 मिनट, 47 सेकंड) होता है।[1] न्यूट्रॉन विकिरण अल्फा विकिरण, बीटा विकिरण और गामा विकिरण विकिरण से अलग है।

स्रोत

न्यूट्रॉन परमाणु संलयन या परमाणु विखंडन, या अन्य परमाणु प्रतिक्रियाओं जैसे कि रेडियोधर्मी क्षय या ब्रह्मांडीय किरणों के साथ कणों की बातचीत या कण त्वरक के भीतर उत्सर्जित हो सकते हैं। बड़े न्यूट्रॉन स्रोत दुर्लभ हैं, और आमतौर पर स्पैलेशन न्यूट्रॉन स्रोत सहित परमाणु रिएक्टर या कण त्वरक जैसे बड़े आकार के उपकरणों तक सीमित हैं।

न्यूट्रॉन विकिरण की खोज एक फीरोज़ा परमाणु नाभिक से टकराते हुए एक अल्फा कण को ​​देखने से हुई, जो एक न्यूट्रॉन, बेरिलियम (अल्फा कण | α, न्यूट्रॉन) कार्बन का उत्सर्जन करते हुए कार्बन परमाणु नाभिक में परिवर्तित हो गया था। एक अल्फा कण उत्सर्जक और एक बड़े (अल्फा कण | α, न्यूट्रॉन) क्रॉस सेक्शन (भौतिकी) के साथ एक आइसोटोप का संयोजन अभी भी एक सामान्य न्यूट्रॉन स्रोत है।

विखंडन से न्यूट्रॉन विकिरण

परमाणु रिएक्टरों में न्यूट्रॉन को आम तौर पर उनकी ऊर्जा के आधार पर धीमा न्यूट्रॉन | स्लो (थर्मल) न्यूट्रॉन या तेज न्यूट्रॉन के रूप में वर्गीकृत किया जाता है। ऊष्मीय न्यूट्रॉन ऊर्जा वितरण (मैक्सवेल-बोल्ट्ज़मैन वितरण) में थर्मोडायनामिक संतुलन में गैस के समान हैं; लेकिन आसानी से परमाणु नाभिक द्वारा कब्जा कर लिया जाता है और प्राथमिक साधन हैं जिसके द्वारा तत्व परमाणु रूपांतरण से गुजरते हैं।

एक प्रभावी विखंडन श्रृंखला प्रतिक्रिया प्राप्त करने के लिए, विखंडन के दौरान उत्पन्न होने वाले न्यूट्रॉन को विखंडनीय नाभिक द्वारा कब्जा कर लिया जाना चाहिए, जो तब विभाजित हो जाता है, और अधिक न्यूट्रॉन जारी करता है। अधिकांश विखंडन रिएक्टर डिजाइनों में, उच्च-ऊर्जा न्यूट्रॉन के लिए कम क्रॉस सेक्शन (भौतिकी) के कारण श्रृंखला प्रतिक्रिया को जारी रखने के लिए पर्याप्त तेज़ न्यूट्रॉन को अवशोषित करने के लिए परमाणु ईंधन को पर्याप्त रूप से परिष्कृत नहीं किया जाता है, इसलिए न्यूट्रॉन मॉडरेटर को धीमा करने के लिए पेश किया जाना चाहिए पर्याप्त अवशोषण की अनुमति देने के लिए तेजी से न्यूट्रॉन थर्मल वेगों तक नीचे। सामान्य न्यूट्रॉन मॉडरेटर्स में ग्रेफाइट, साधारण (हल्का) पानी और भारी पानी शामिल हैं। कुछ रिएक्टर (फास्ट न्यूट्रॉन रिएक्टर) और सभी परमाणु हथियार फास्ट न्यूट्रॉन पर निर्भर हैं।

कॉस्मोजेनिक न्यूट्रॉन

Template:Uncited section

कॉस्मोजेनिक न्यूट्रॉन, पृथ्वी के वायुमंडल या सतह में ब्रह्मांडीय विकिरण से उत्पन्न न्यूट्रॉन, और कण त्वरक में उत्पादित रिएक्टरों में आने वाले लोगों की तुलना में काफी अधिक ऊर्जा हो सकती है। उनमें से अधिकांश धरातल पर पहुँचने से पहले एक नाभिक को सक्रिय कर देते हैं; कुछ हवा में नाभिक के साथ प्रतिक्रिया करते हैं[clarification needed]. नाइट्रोजन-14 के साथ अभिक्रिया से कार्बन-14 का निर्माण होता है (14C), रेडियोकार्बन डेटिंग में व्यापक रूप से उपयोग किया जाता है।

उपयोग करता है

न्यूट्रॉन तापमान | ठंडा, थर्मल और गर्म न्यूट्रॉन विकिरण आमतौर पर न्यूट्रॉन बिखरने और न्यूट्रॉन विवर्तन प्रयोगों में उपयोग किया जाता है, क्रिस्टलोग्राफी, संघनित पदार्थ भौतिकी, जीव विज्ञान, ठोस राज्य रसायन विज्ञान, सामग्री विज्ञान, भूविज्ञान, खनिज विज्ञान में गुणों और सामग्रियों की संरचना का आकलन करने के लिए , और संबंधित विज्ञान। न्यूट्रॉन विकिरण का उपयोग [[बोरॉन न्यूट्रॉन प्रकीर्णन थेरेपी]] में कैंसर के ट्यूमर के इलाज के लिए भी किया जाता है क्योंकि इसकी अत्यधिक मर्मज्ञ और सेलुलर संरचना के लिए हानिकारक प्रकृति होती है। न्यूट्रॉन का उपयोग औद्योगिक भागों की इमेजिंग के लिए भी किया जा सकता है, जिसे फिल्म का उपयोग करते समय न्यूट्रॉन रेडियोग्राफी कहा जाता है, डिजिटल छवि लेते समय न्यूट्रॉन रेडियोस्कोपी, जैसे छवि प्लेटों के माध्यम से, और तीन आयामी छवियों के लिए न्यूट्रॉन टोमोग्राफीन्यूट्रॉन इमेजिंग का उपयोग आमतौर पर परमाणु उद्योग, अंतरिक्ष और एयरोस्पेस उद्योग, साथ ही उच्च विश्वसनीयता वाले विस्फोटक उद्योग में किया जाता है।

आयनीकरण तंत्र और गुण

न्यूट्रॉन विकिरण को अक्सर अप्रत्यक्ष रूप से आयनकारी विकिरण कहा जाता है। यह परमाणुओं को उसी तरह से आयनित नहीं करता है जिस तरह प्रोटॉन और इलेक्ट्रॉन जैसे आवेशित कण करते हैं (इलेक्ट्रॉन को उत्तेजित करते हैं), क्योंकि न्यूट्रॉन में कोई चार्ज नहीं होता है। हालांकि, न्यूट्रॉन इंटरैक्शन काफी हद तक आयनीकरण कर रहे हैं, उदाहरण के लिए जब न्यूट्रॉन अवशोषण के परिणामस्वरूप गामा उत्सर्जन होता है और गामा किरण (फोटॉन) बाद में एक परमाणु से एक इलेक्ट्रॉन को हटा देता है, या न्यूट्रॉन इंटरैक्शन से एक न्यूक्लियस रीकॉइलिंग आयनित होता है और दूसरे में अधिक पारंपरिक बाद के आयनीकरण का कारण बनता है परमाणु। क्योंकि न्यूट्रॉन अनावेशित होते हैं, वे अल्फा विकिरण या बीटा विकिरण की तुलना में अधिक मर्मज्ञ होते हैं। कुछ मामलों में वे गामा विकिरण की तुलना में अधिक मर्मज्ञ होते हैं, जो उच्च परमाणु संख्या वाले पदार्थों में बाधित होता है। हाइड्रोजन जैसे कम परमाणु क्रमांक वाले पदार्थों में, एक कम ऊर्जा वाली गामा किरण उच्च ऊर्जा वाले न्यूट्रॉन की तुलना में अधिक भेदन कर सकती है।

स्वास्थ्य संबंधी खतरे और सुरक्षा

स्वास्थ्य भौतिकी में, न्यूट्रॉन विकिरण एक प्रकार का विकिरण जोखिम है। न्यूट्रॉन विकिरण का एक और अधिक गंभीर खतरा, न्यूट्रॉन सक्रियण है, न्यूट्रॉन विकिरण की शारीरिक ऊतकों सहित अधिकांश पदार्थों में रेडियोधर्मिता को प्रेरित करने की क्षमता है।[2] यह परमाणु नाभिक द्वारा न्यूट्रॉन पर कब्जा करने के माध्यम से होता है, जो एक अन्य न्यूक्लाइड, अक्सर एक रेडियोन्यूक्लाइड में परिवर्तित हो जाते हैं। यह प्रक्रिया एक परमाणु हथियार के विस्फोट से निकलने वाली अधिकांश रेडियोधर्मी सामग्री के लिए जिम्मेदार है। यह परमाणु विखंडन और परमाणु संलयन प्रतिष्ठानों में भी एक समस्या है क्योंकि यह धीरे-धीरे उपकरण को रेडियोधर्मी बना देता है, जिससे अंततः इसे प्रतिस्थापित किया जाना चाहिए और निम्न-स्तर के रेडियोधर्मी कचरे के रूप में निपटाया जाना चाहिए।

न्यूट्रॉन विकिरण सुरक्षा विकिरण परिरक्षण पर निर्भर करती है। न्यूट्रॉन की उच्च गतिज ऊर्जा के कारण, यह विकिरण बाहरी विकिरण स्रोतों के संपर्क में आने पर पूरे शरीर के लिए सबसे गंभीर और खतरनाक विकिरण माना जाता है। फोटॉनों या आवेशित कणों पर आधारित पारंपरिक आयनीकरण विकिरण की तुलना में, न्यूट्रॉन बार-बार हल्के नाभिकों द्वारा उछले और धीमे (अवशोषित) होते हैं, इसलिए हाइड्रोजन युक्त पदार्थ लोहे के नाभिकों की तुलना में परिरक्षण में अधिक प्रभावी होते हैं। प्रकाश परमाणु लोचदार प्रकीर्णन द्वारा न्यूट्रॉन को धीमा करने का काम करते हैं ताकि वे परमाणु प्रतिक्रियाओं द्वारा अवशोषित हो सकें। हालांकि, गामा विकिरण अक्सर ऐसी प्रतिक्रियाओं में उत्पन्न होता है, इसलिए इसे अवशोषित करने के लिए अतिरिक्त परिरक्षण प्रदान किया जाना चाहिए। उन सामग्रियों के उपयोग से बचने के लिए सावधानी बरतनी चाहिए जिनके नाभिक विखंडन या न्यूट्रॉन कैप्चर करते हैं जो नाभिक के रेडियोधर्मी क्षय का कारण बनते हैं, गामा किरणें पैदा करते हैं।

अधिकांश सामग्री के माध्यम से न्यूट्रॉन आसानी से गुजरते हैं, और इसलिए विकिरण की दी गई मात्रा से अवशोषित खुराक (ग्रे (इकाई) एस में मापा जाता है) कम है, लेकिन जैविक क्षति का कारण बनने के लिए पर्याप्त बातचीत करते हैं। सबसे प्रभावी परिरक्षण सामग्री पानी, या POLYETHYLENE या पैराफिन मोम जैसे हाइड्रोकार्बन हैं। जल-विस्तारित पॉलिएस्टर (WEP) इसकी उच्च हाइड्रोजन सामग्री और आग के प्रतिरोध के कारण कठोर वातावरण में एक परिरक्षण दीवार के रूप में प्रभावी है, जिससे इसे परमाणु, स्वास्थ्य भौतिकी और रक्षा उद्योगों की एक श्रृंखला में उपयोग करने की अनुमति मिलती है।[3] हाइड्रोजन आधारित सामग्री परिरक्षण के लिए उपयुक्त हैं क्योंकि वे विकिरण के खिलाफ उचित अवरोधक हैं।[4] ठोस (जहां काफी संख्या में पानी के अणु रासायनिक रूप से सीमेंट से बंधते हैं) और बजरी गामा किरणों और न्यूट्रॉन दोनों के संयुक्त परिरक्षण के कारण एक सस्ता समाधान प्रदान करते हैं। बोरॉन भी एक उत्कृष्ट न्यूट्रॉन अवशोषक है (और कुछ न्यूट्रॉन बिखरने से भी गुजरता है)। बोरॉन कार्बन या हीलियम में क्षय हो जाता है और [[बोरान कार्बाइड]] के साथ वस्तुतः कोई गामा विकिरण उत्पन्न नहीं करता है, आमतौर पर एक ढाल का उपयोग किया जाता है जहां कंक्रीट लागत निषेधात्मक होगी। व्यावसायिक रूप से, पानी या ईंधन तेल, कंक्रीट, बजरी, और बी के टैंक4सी आम ढाल हैं जो बड़ी मात्रा में न्यूट्रॉन प्रवाह के क्षेत्रों को घेरते हैं, उदाहरण के लिए, परमाणु रिएक्टर। बोरॉन-इंप्रेग्नेटेड सिलिका ग्लास, स्टैंडर्ड बोरोसिल ग्लास , हाई-बोरॉन स्टील, पैराफिन और प्लेक्सीग्लास के विशिष्ट उपयोग हैं।

क्योंकि न्यूट्रॉन जो हाइड्रोजन नाभिक (प्रोटॉन, या ड्यूटेरॉन) पर हमला करते हैं, उस नाभिक को ऊर्जा प्रदान करते हैं, वे बदले में अपने रासायनिक बंधनों से टूट जाते हैं और रुकने से पहले थोड़ी दूरी तय करते हैं। ऐसे हाइड्रोजन नाभिक उच्च रैखिक ऊर्जा हस्तांतरण कण होते हैं, और बदले में वे उस सामग्री के आयनीकरण से रुक जाते हैं जिससे वे यात्रा करते हैं। नतीजतन, जीवित ऊतकों में, न्यूट्रॉन की अपेक्षाकृत उच्च सापेक्ष जैविक प्रभावशीलता होती है, और समतुल्य ऊर्जा जोखिम के गामा या बीटा विकिरण की तुलना में जैविक क्षति पैदा करने में लगभग दस गुना अधिक प्रभावी होते हैं। ये न्यूट्रॉन या तो कोशिकाओं की कार्यक्षमता में बदलाव ला सकते हैं या प्रतिकृति को पूरी तरह से रोक सकते हैं, जिससे समय के साथ शरीर को नुकसान हो सकता है।[5] न्यूट्रॉन विशेष रूप से आंख के कॉर्निया जैसे कोमल ऊतकों को नुकसान पहुंचाते हैं।

सामग्री पर प्रभाव

उच्च-ऊर्जा न्यूट्रॉन समय के साथ सामग्री को नुकसान पहुंचाते हैं और ख़राब करते हैं; न्यूट्रॉन के साथ सामग्रियों की बमबारी टक्कर कैस्केड बनाती है जो बिंदु दोष उत्पन्न कर सकती है और सामग्री में अव्यवस्था, जिसका निर्माण विकिरण के संपर्क में आने वाली सामग्रियों में समय के साथ होने वाले सूक्ष्म संरचनात्मक परिवर्तनों के पीछे प्राथमिक चालक है। उच्च न्यूट्रॉन प्रवाह पर यह धातुओं और अन्य सामग्रियों के उत्सर्जन और उनमें से कुछ में न्यूट्रॉन-प्रेरित सूजन का कारण बन सकता है। यह परमाणु रिएक्टर जहाजों के लिए एक समस्या पैदा करता है और उनके जीवनकाल को महत्वपूर्ण रूप से सीमित करता है (जो जहाज के नियंत्रित एनीलिंग (धातु विज्ञान) द्वारा कुछ हद तक लंबा हो सकता है, निर्मित अव्यवस्थाओं की संख्या को कम करता है)। ग्रेफाइट न्यूट्रॉन मॉडरेटर ब्लॉक विशेष रूप से इस प्रभाव के लिए अतिसंवेदनशील होते हैं, जिन्हें विग्नर प्रभाव के रूप में जाना जाता है, और समय-समय पर एनील किया जाना चाहिए। इस तरह के एनीलिंग ऑपरेशन के दौरान दुर्घटना के कारण विंडस्केल आग आग लग गई थी।

सामग्री में विकिरण क्षति सामग्री में एक जाली परमाणु के साथ एक ऊर्जावान घटना कण (एक न्यूट्रॉन, या अन्यथा) की बातचीत के परिणामस्वरूप होती है। टकराव जाली परमाणु को गतिज ऊर्जा के बड़े पैमाने पर हस्तांतरण का कारण बनता है, जो इसकी जाली साइट से विस्थापित हो जाता है, जिसे प्राथमिक नॉक-ऑन परमाणु (पीकेए) के रूप में जाना जाता है। क्योंकि PKA अन्य जाली परमाणुओं से घिरा हुआ है, इसके विस्थापन और जाली के माध्यम से पारित होने के परिणामस्वरूप कई बाद की टक्करें होती हैं और अतिरिक्त नॉक-ऑन परमाणुओं की रचना होती है, जिसे टक्कर झरना या विस्थापन झरना के रूप में जाना जाता है। नॉक-ऑन परमाणु प्रत्येक टक्कर के साथ ऊर्जा खो देते हैं, और अंतरालीय दोष के रूप में समाप्त हो जाते हैं, प्रभावी रूप से जाली में फ्रेनकेल दोषों की एक श्रृंखला बनाते हैं। गर्मी भी टक्करों (इलेक्ट्रॉनिक ऊर्जा हानि से) के परिणामस्वरूप उत्पन्न होती है, जैसा कि संभवतः परमाणु रूपांतरण हैं। क्षति की भयावहता इतनी है कि लोहे की जाली में एक एकल 1 MeV न्यूट्रॉन एक PKA बनाता है जो लगभग 1,100 फ्रेनकेल जोड़े पैदा करता है।[6] संपूर्ण कैस्केड घटना 1 × 10 के टाइमस्केल पर होती है-13 सेकंड, और इसलिए, केवल घटना के कंप्यूटर सिमुलेशन में ही देखे जा सकते हैं।[7] नॉक-ऑन परमाणु गैर-संतुलन अंतरालीय जाली स्थितियों में समाप्त हो जाते हैं, जिनमें से कई पड़ोसी खाली जाली साइटों में वापस फैलकर खुद को नष्ट कर देते हैं और आदेशित जाली को पुनर्स्थापित करते हैं। वे जो रिक्तियां नहीं छोड़ते हैं या नहीं छोड़ सकते हैं, जो संतुलन एकाग्रता के ऊपर रिक्ति एकाग्रता में स्थानीय वृद्धि का कारण बनता है। थर्मल प्रसार के परिणामस्वरूप ये रिक्तियां पलायन करती हैं[disambiguation needed] रिक्ति सिंक (यानी, अनाज की सीमाओं, अव्यवस्थाओं) की ओर लेकिन महत्वपूर्ण मात्रा में समय के लिए मौजूद है, जिसके दौरान अतिरिक्त उच्च-ऊर्जा कण जाली पर बमबारी करते हैं, टकराव कैस्केड और अतिरिक्त रिक्तियां बनाते हैं, जो सिंक की ओर पलायन करते हैं। एक जाली में विकिरण का मुख्य प्रभाव दोषों का महत्वपूर्ण और लगातार प्रवाह है जो कि दोष हवा के रूप में जाना जाता है। पिनिंग पॉइंट और बाद में, क्रिस्टलोग्राफिक दोष बनाने के लिए एक दूसरे के साथ संयोजन करके रिक्तियां भी समाप्त हो सकती हैं।[6]

टकराव झरना किसी दिए गए तापमान के लिए संतुलन की तुलना में सामग्री में बहुत अधिक रिक्तियां और बीचवाला बनाता है, और परिणामस्वरूप सामग्री में प्रसार नाटकीय रूप से बढ़ जाता है। यह विकिरण-संवर्धित प्रसार नामक एक प्रभाव की ओर जाता है, जो समय के साथ सामग्री के माइक्रोस्ट्रक्चरल विकास की ओर जाता है। माइक्रोस्ट्रक्चर के विकास के लिए अग्रणी तंत्र कई हैं, तापमान, प्रवाह और प्रवाह के साथ भिन्न हो सकते हैं, और व्यापक अध्ययन का विषय हैं।[8]

  • सिंक से रिक्तियों के पूर्वोक्त प्रवाह से विकिरण-प्रेरित अलगाव परिणाम, सिंक से दूर जाली परमाणुओं के प्रवाह को लागू करना; लेकिन मिश्र धातु सामग्री के मामले में मिश्र धातु संरचना के समान अनुपात में जरूरी नहीं है। इसलिए इन फ्लक्स से सिंक के आसपास मिश्र धातु तत्वों की कमी हो सकती है। कैस्केड द्वारा पेश किए गए इंटरस्टिशियल्स के प्रवाह के लिए, प्रभाव उलटा होता है: इंटरस्टिशियल्स सिंक की ओर फैलते हैं जिसके परिणामस्वरूप सिंक के पास मिश्र धातु संवर्धन होता है।[6]* पिनिंग पॉइंट तब बनते हैं जब रिक्तियाँ एक जाली तल पर क्लस्टर बनाती हैं। यदि ये रिक्ति सघनता तीन आयामों में विस्तारित होती है, तो एक निर्वात बनता है। परिभाषा के अनुसार, रिक्त स्थान निर्वात के अंतर्गत होते हैं, लेकिन अल्फा कण | अल्फा-कण विकिरण (हीलियम) के मामले में या परमाणु रूपांतरण के परिणामस्वरूप गैस का उत्पादन होने पर गैस से भरा हो सकता है। शून्य को तब एक बुलबुला कहा जाता है, और विकिरण के अधीन भागों की आयामी अस्थिरता (न्यूट्रॉन-प्रेरित सूजन) की ओर जाता है। सूजन एक प्रमुख दीर्घकालिक डिजाइन समस्या प्रस्तुत करती है, विशेष रूप से स्टेनलेस स्टील से बने रिएक्टर घटकों में।[9] क्रिस्टलोग्राफिक आइसोट्रॉपी के साथ मिश्र धातुएं, जैसे कि Zircaloy अव्यवस्था के छोरों के निर्माण के अधीन हैं, लेकिन शून्य गठन का प्रदर्शन नहीं करते हैं। इसके बजाय, लूप विशेष जाली विमानों पर बनते हैं, और विकिरण-प्रेरित विकास को जन्म दे सकते हैं, जो सूजन से अलग एक घटना है, लेकिन यह एक मिश्र धातु में महत्वपूर्ण आयामी परिवर्तन भी पैदा कर सकता है।[10]
  • सामग्री का विकिरण भी सामग्री में चरण परिवर्तनों को प्रेरित कर सकता है: एक ठोस समाधान के मामले में, विलेय संवर्धन या सिंक विकिरण-प्रेरित पृथक्करण में कमी से सामग्री में नए चरणों की वर्षा हो सकती है।[11]

इन तंत्रों के यांत्रिक प्रभावों में विकिरण सख्त, उत्सर्जन, रेंगना (विरूपण), और तनाव जंग क्रैकिंग | पर्यावरण-सहायक क्रैकिंग शामिल हैं। किसी सामग्री में विकिरण के परिणामस्वरूप उत्पन्न होने वाले दोष समूहों, अव्यवस्था के छोरों, रिक्तियों, बुलबुले, और अवक्षेप सभी सामग्री में मजबूती और उत्सर्जन (लचीलेपन की हानि) में योगदान करते हैं।[12] रिएक्टर प्रेशर वेसल वाली सामग्री के लिए भंगुरता विशेष रूप से चिंता का विषय है, जहां परिणामस्वरूप वेसल को फ्रैक्चर करने के लिए आवश्यक ऊर्जा काफी कम हो जाती है। दोषों को समाप्त करके लचीलापन बहाल करना संभव है, और परमाणु रिएक्टरों का जीवन-विस्तार सुरक्षित रूप से ऐसा करने की क्षमता पर निर्भर करता है। रेंगना (विरूपण) भी विकिरणित सामग्रियों में बहुत तेज होता है, हालांकि बढ़ी हुई भिन्नता के परिणामस्वरूप नहीं, बल्कि जाली तनाव और विकासशील सूक्ष्म संरचना के बीच बातचीत के परिणामस्वरूप होता है। पर्यावरण की सहायता से क्रैकिंग या, अधिक विशेष रूप से, विकिरण-सहायता तनाव जंग क्रैकिंग | विकिरण-सहायता तनाव जंग क्रैकिंग (आईएएससीसी) विशेष रूप से मिश्र धातु में न्यूट्रॉन विकिरण के अधीन और पानी के संपर्क में देखा जाता है, जो कि रेडिओलिसिस के परिणामस्वरूप क्रैक युक्तियों पर हाइड्रोजन उत्सर्जन के कारण होता है। पानी, जिससे दरार को फैलाने के लिए आवश्यक ऊर्जा में कमी आती है।[6]


यह भी देखें

संदर्भ

  1. Yue, A. T.; Dewey, M. S.; Gilliam, D. M.; Greene, G. L.; Laptev, A. B.; Nico, J. S.; Snow, W. M.; Wietfeldt, F. E. (27 November 2013). "न्यूट्रॉन लाइफटाइम का बेहतर निर्धारण". Physical Review Letters. 111 (22): 222501. arXiv:1309.2623. Bibcode:2013PhRvL.111v2501Y. doi:10.1103/PhysRevLett.111.222501. PMID 24329445. S2CID 17006418.
  2. "विकिरण कैसे ऊतक को नुकसान पहुंचाता है". Michigan State University. Retrieved 2017-12-21.
  3. "न्यूट्रॉन विकिरण परिरक्षण". www.frontier-cf252.com. Frontier Technology Corporation. Retrieved 2017-12-21.
  4. Carrillo, Héctor René Vega (2006-05-15). "जल-विस्तारित पॉलिएस्टर का न्यूट्रॉन परिरक्षण प्रदर्शन" (PDF). TA-3 Dosimetry and Instrumentation. Retrieved 2017-12-21.
  5. Specialist, WPI, Environmental Information Services -- Shawn Denny, Information Architect; Mike Pizzuti, Graphic Designer; Chelene Neal, Web Information Specialist; Kate Bessiere, Web Information. "मानव विकिरण प्रयोगों पर सलाहकार समिति की अंतिम रिपोर्ट". ehss.energy.gov. Retrieved 2017-12-21.{{cite web}}: CS1 maint: multiple names: authors list (link)
  6. 6.0 6.1 6.2 6.3 Dunand, David. "Materials in Nuclear Power Generation." Materials Science & Engineering 381: Materials for Energy Efficient Technology. Northwestern University, Evanston. 3 Feb. 2015. Lecture
  7. A. Struchbery, E. Bezakova "Thermal-Spike Lifetime from Picosecond-Duration Preequilibrium Effects in Hyperfine Magnetic Fields Following Ion Implantation". 3 May. 1999.
  8. Thomé, L.; Moll, S.; Debelle, A.; Garrido, F.; Sattonnay, G.; Jagielski, J. (1 June 2018). "परमाणु सिरेमिक में विकिरण प्रभाव". Advances in Materials Science and Engineering. 2012: 1–13. doi:10.1155/2012/905474.
  9. CAWTHORNE, C.; FULTON, E. J. (1 November 1967). "विकिरणित स्टेनलेस स्टील में रिक्तियाँ". Nature. 216 (5115): 575–576. Bibcode:1967Natur.216..575C. doi:10.1038/216575a0. S2CID 4238714.
  10. Adamson, R. "Effects of Neutron Radiation on Microstructure and the Properties of Zircaloy" 1977. 08 Feb. 2015.
  11. Hyun Ju Jin, Tae Kyu Kim. "Neutron irradiation performance of Zircaloy-4 under research reactor operating conditions." Annals of Nuclear Energy. 13 Sept. 2014 Web. 08 Feb. 2015.
  12. Baroch, CJ (1975). "Effect of Irradiation at 130, 650, and 775°F on Tensile Properties of Zircaloy-4 at 70, 650, and 775°F". संरचनात्मक सामग्री पर विकिरण के प्रभाव. pp. 129–129–14. doi:10.1520/STP33683S. ISBN 978-0-8031-0539-3. {{cite book}}: |website= ignored (help)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.222501


बाहरी संबंध