स्प्रे (गणित)
अंतर ज्यामिति में, एक स्प्रे स्पर्शरेखा बंडल टीएम पर एक वेक्टर क्षेत्र एच होता है, जो बेस मैनिफोल्ड एम पर साधारण डिफरेंशियल इक्वेशन के क्वासिकॉनवेक्स फ़ंक्शन सेकेंड ऑर्डर सिस्टम को एनकोड करता है। आमतौर पर एक स्प्रे को इस अर्थ में सजातीय होना आवश्यक है कि इसका अभिन्न वक्र t→Φ हैHt(ξ)∈TM नियम Φ का पालन करता हैHटी(λξ)=ΦHλt(ξ) सकारात्मक पुनर्मूल्यांकन में। यदि यह आवश्यकता हटा दी जाती है, तो एच को 'सेमिस्प्रे' कहा जाता है।
रिमेंनियन ज्यामिति और फिन्सलर ज्यामिति में प्राकृतिक रूप से स्प्रे उत्पन्न होते हैं, क्योंकि जियोडेसिक स्प्रे जिनके अभिन्न वक्र स्थानीय लंबाई को कम करने वाले घटता के स्पर्शरेखा वक्र होते हैं। सेमिस्प्रे स्वाभाविक रूप से लैग्रैंगियन यांत्रिकी में क्रिया के चरम घटता के रूप में उत्पन्न होते हैं। इन सभी उदाहरणों को सामान्य करते हुए, M पर कोई भी (संभवतः अरैखिक) कनेक्शन एक सेमीस्प्रे H को प्रेरित करता है, और इसके विपरीत, कोई भी सेमीस्प्रे H, M पर एक मरोड़-मुक्त गैर-रैखिक कनेक्शन उत्पन्न करता है। यदि मूल कनेक्शन मरोड़-मुक्त है, तो यह H द्वारा प्रेरित कनेक्शन के साथ मेल खाता है। , और सजातीय मरोड़-मुक्त कनेक्शन पूर्ण स्प्रे के साथ एक-से-एक पत्राचार में हैं।[1]
औपचारिक परिभाषाएँ
एम को एक अलग-अलग कई गुना होने दें और (टीएम, πTM, एम) इसकी स्पर्शरेखा बंडल। फिर टीएम पर एक सदिश क्षेत्र एच (अर्थात, डबल स्पर्शरेखा बंडल टीटीएम का एक खंड (फाइबर बंडल)) एम पर एक 'सेमिस्प्रे' है, यदि निम्नलिखित तीन समकक्ष स्थितियों में से कोई भी हो:
- (πTM)*Hξ = ξ।
- जेएच = वी, जहां जे टीएम पर स्पर्शरेखा बंडल पर डबल स्पर्शरेखा बंडल # कैननिकल टेंसर फ़ील्ड है और वी टीएम \ 0 पर कैननिकल वेक्टर फ़ील्ड है।
- j∘H=H, जहां j:TTM→TTM डबल टेंगेंट बंडल # सेकेंडरी वेक्टर बंडल स्ट्रक्चर और कैनोनिकल फ्लिप है और H को मैपिंग TM→TTM के रूप में देखा जाता है।
एम पर एक सेमीस्प्रे एच एक '(पूर्ण) स्प्रे' है, यदि निम्न समतुल्य स्थितियों में से कोई भी हो:
- एचλξ = λ*(एलएचξ), जहां λ*:TTM→TTM एक सकारात्मक स्केलर λ>0 द्वारा गुणन λ:TM→TM का पुश-फॉरवर्ड है।
- विहित सदिश क्षेत्र V के साथ H का लाई-व्युत्पन्न [V,H]=H को संतुष्ट करता है।
- इंटीग्रल कर्व्स t→ΦHt(ξ)∈TM\0 का H संतुष्ट ΦHटी(λξ)=λΦHλt(ξ) किसी भी λ>0 के लिए।
होने देना स्थानीय निर्देशांक चालू करें स्थानीय निर्देशांक से जुड़ा हुआ है ) पर प्रत्येक स्पर्शरेखा स्थान पर समन्वय के आधार का उपयोग करना। तब सेमीस्प्रे चालू है अगर इसमें फॉर्म का स्थानीय प्रतिनिधित्व है
टीएम पर प्रत्येक संबद्ध समन्वय प्रणाली पर। सेमीस्प्रे एच एक (पूर्ण) स्प्रे है, अगर और केवल अगर 'स्प्रे गुणांक' जीमैं संतुष्ट हूं
== Lagrangian यांत्रिकी == में semisprays
लैग्रैन्जियन यांत्रिकी में एक भौतिक प्रणाली को कुछ विन्यास स्थान एम के स्पर्शरेखा बंडल पर एक लैग्रैजियन फ़ंक्शन एल: टीएम → 'आर' द्वारा तैयार किया गया है। गतिशील कानून हैमिल्टनियन सिद्धांत से प्राप्त किया जाता है, जो बताता है कि समय विकास γ: [ए, बी] → सिस्टम की स्थिति का एम एक्शन इंटीग्रल के लिए स्थिर है
- .
टीएम पर संबंधित निर्देशांक में क्रिया अभिन्न की पहली भिन्नता को इस रूप में पढ़ा जाता है
जहाँ X:[a,b]→'R' γ के साथ जुड़े वेरिएशन वेक्टर फ़ील्ड हैs: [ए, बी] → एम लगभग γ (टी) = γ0(टी)। निम्नलिखित अवधारणाओं को प्रस्तुत करके इस प्रथम भिन्नता सूत्र को अधिक जानकारीपूर्ण रूप में पुनर्गठित किया जा सकता है:
- कोवेक्टर साथ का संयुग्मी संवेग है .
- इसी एक रूप साथ Lagrangian से जुड़ा हिल्बर्ट-फॉर्म है।
- द्विरेखीय रूप साथ Lagrangian का मौलिक टेंसर है .
- Lagrangian मौलिक टेंसर होने पर लेजेंड्रे स्थिति को संतुष्ट करता है हर पर गैर पतित है . फिर का उलटा मैट्रिक्स द्वारा निरूपित किया जाता है .
- Lagrangian से जुड़ी ऊर्जा है .
यदि लीजेंड्रे स्थिति संतुष्ट होती है, तो dα∈Ω2(TM) एक सहानुभूतिपूर्ण रूप है, और हैमिल्टनियन फ़ंक्शन E के अनुरूप TM पर एक अद्वितीय हैमिल्टनियन वेक्टर क्षेत्र H मौजूद है जैसे कि
- .
मान लीजिए (एक्समैं, वाईi) TM पर संबद्ध निर्देशांकों में हेमिल्टनियन सदिश क्षेत्र H के घटक हों। तब
और
इसलिए हम देखते हैं कि हैमिल्टनियन वेक्टर फ़ील्ड H स्प्रे गुणांक वाले कॉन्फ़िगरेशन स्पेस M पर एक सेमीस्प्रे है
अब पहले परिवर्तनशील सूत्र को फिर से लिखा जा सकता है
और हम देखते हैं γ[a,b]→M निश्चित अंत बिंदुओं के साथ अभिन्न क्रिया के लिए स्थिर है अगर और केवल अगर इसकी स्पर्शरेखा वक्र γ':[a,b]→TM हैमिल्टन वेक्टर क्षेत्र एच के लिए एक अभिन्न वक्र है। इसलिए यांत्रिक प्रणालियों की गतिशीलता का वर्णन एक्शन इंटीग्रल से उत्पन्न होने वाले सेमीस्प्रे द्वारा किया जाता है।
जियोडेसिक स्प्रे
रीमैनियन कई गुना और फिन्सलर कई गुना की स्थानीय लंबाई को कम करने वाले घटता को geodesics कहा जाता है। Lagrangian यांत्रिकी के ढांचे का उपयोग करके स्प्रे संरचनाओं के साथ इन वक्रों का वर्णन किया जा सकता है। टीएम पर लैग्रैन्जियन फ़ंक्शन को परिभाषित करें
जहां F:TM→'R' फिन्सलर मैनिफोल्ड है। Riemannian मामले में कोई F का उपयोग करता है2(x,ξ) = जीij(एक्स) एक्समैंxजम्मू । अब उपरोक्त अनुभाग से अवधारणाओं का परिचय दें। रिमेंनियन मामले में यह पता चला है कि मौलिक टेंसर जीij(x, ξ) केवल रीमैनियन मीट्रिक जी हैij(एक्स)। सामान्य मामले में एकरूपता की स्थिति
फिन्सलर-फ़ंक्शन का तात्पर्य निम्न सूत्र से है:
शास्त्रीय यांत्रिकी के संदर्भ में अंतिम समीकरण बताता है कि प्रणाली में सभी ऊर्जा (एम, एल) गतिज रूप में है। इसके अलावा, एक समरूपता गुण प्राप्त करता है
जिनमें से आखिरी का कहना है कि इस यांत्रिक प्रणाली के लिए हैमिल्टनियन वेक्टर फ़ील्ड एच एक पूर्ण स्प्रे है। अंतर्निहित फिन्सलर (या रीमैनियन) मैनिफोल्ड की निरंतर गति जियोडेसिक्स को इस स्प्रे द्वारा निम्नलिखित कारणों से वर्णित किया गया है:
- चूंकि जीξ फिन्सलर रिक्त स्थान के लिए सकारात्मक निश्चित है, कार्यात्मक लंबाई के लिए हर छोटा पर्याप्त स्थिर वक्र लंबाई कम करना है।
- क्रिया समाकलन के लिए प्रत्येक स्थिर वक्र स्थिर गति का होता है , चूंकि ऊर्जा स्वचालित रूप से गति की एक स्थिरांक है।
- किसी भी वक्र के लिए निरंतर गति की क्रिया अभिन्न और लंबाई कार्यात्मक से संबंधित हैं
इसलिए, एक वक्र क्रिया अभिन्न के लिए स्थिर है अगर और केवल अगर यह निरंतर गति का है और कार्यात्मक लंबाई के लिए स्थिर है। हैमिल्टनियन वेक्टर फील्ड एच को फिन्सलर मैनिफोल्ड (एम, एफ) और संबंधित प्रवाह Φ का जियोडेसिक स्प्रे कहा जाता है।Hटी(ξ) को जियोडेसिक प्रवाह कहा जाता है।
गैर-रैखिक कनेक्शन के साथ पत्राचार
एक सेमीस्प्रे एक चिकने मैनिफोल्ड पर एह्रेस्मान-कनेक्शन को परिभाषित करता है अपने क्षैतिज और ऊर्ध्वाधर अनुमानों के माध्यम से स्लिट स्पर्शरेखा बंडल पर
TM\0 पर इस कनेक्शन में हमेशा गायब होने वाला मरोड़ वाला टेंसर होता है, जिसे फ्रोलिचर-निजेनहुइस ब्रैकेट के रूप में परिभाषित किया गया है टी = [जे, वी]। अधिक प्राथमिक शब्दों में मरोड़ को इस रूप में परिभाषित किया जा सकता है
टीएम \ 0 पर कैनोनिकल वेक्टर फ़ील्ड वी का परिचय और प्रेरित कनेक्शन के आसन्न संरचना Θ सेमीस्प्रे के क्षैतिज भाग को एचएच = ΘV के रूप में लिखा जा सकता है। सेमीस्प्रे के ऊर्ध्वाधर भाग ε=vH को 'प्रथम स्प्रे इनवेरिएंट' के रूप में जाना जाता है, और सेमीस्प्रे H स्वयं में विघटित हो जाता है
पहला स्प्रे इनवेरिएंट तनाव से संबंधित है
साधारण अंतर समीकरण के माध्यम से प्रेरित गैर-रैखिक कनेक्शन का
इसलिए, पहला स्प्रे इनवेरिएंट ε (और इसलिए पूरे अर्ध-स्प्रे एच) को गैर-रैखिक कनेक्शन से पुनर्प्राप्त किया जा सकता है
इस संबंध से कोई यह भी देखता है कि प्रेरित कनेक्शन सजातीय है अगर और केवल अगर एच एक पूर्ण स्प्रे है।
स्प्रे और सेमीस्प्रे के जैकोबी क्षेत्र
This section needs expansion. You can help by adding to it. (February 2013) |
सेमीस्प्रे के जैकोबी क्षेत्रों के लिए एक अच्छा स्रोत धारा 4.4 है, सार्वजनिक रूप से उपलब्ध पुस्तक फिन्सलर-लग्रेंज ज्योमेट्री बाय बुकातारू और मिरॉन के सेमीस्प्रे के जैकोबी समीकरण। विशेष रूप से नोट 'गतिशील सहसंयोजक व्युत्पन्न' की उनकी अवधारणा है। एक अन्य पेपर में बुकातारू, कॉन्स्टेंटिनस्कु और डाहल इस अवधारणा को 'कौशांबी डेरिवेटिव ऑपरेटर' से संबंधित करते हैं।
दामोदर धर्मानंद कोसंबी के तरीकों के अच्छे परिचय के लिए, लेख देखें, 'कोसंबी-कार्टन-चेर्न सिद्धांत क्या है?'।
संदर्भ
- ↑ I. Bucataru, R. Miron, Finsler-Lagrange Geometry, Editura Academiei Române, 2007.
- Sternberg, Shlomo (1964), Lectures on Differential Geometry, Prentice-Hall.
- Lang, Serge (1999), Fundamentals of Differential Geometry, Springer-Verlag.