बोगोलीबॉव परिवर्तन

From Vigyanwiki
Revision as of 15:36, 25 April 2023 by alpha>Indicwiki (Created page with "{{Short description|Mathematical operation in quantum optics, general relativity and other areas of physics}} सैद्धांतिक भौतिकी में,...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

सैद्धांतिक भौतिकी में, बोगोलीबॉव परिवर्तन, जिसे बोगोलीबॉव-वैलाटिन परिवर्तन के रूप में भी जाना जाता है, को स्वतंत्र रूप से 1958 में निकोले बोगोलीबॉव और जॉन जॉर्ज वैलेटिन द्वारा एक सजातीय प्रणाली में बीसीएस सिद्धांत के समाधान खोजने के लिए विकसित किया गया था।[1][2] बोगोलीबॉव रूपांतरण या तो विहित रूपान्तरण संबंध बीजगणित विहित प्रतिसंक्रमण संबंध बीजगणित बीजगणित का एक समरूपता है। यह संबंधित अभ्यावेदन पर एक स्वत: समानता को प्रेरित करता है। बोगोलीबॉव परिवर्तन का उपयोग अक्सर हैमिल्टनियन (क्वांटम यांत्रिकी) को विकर्ण करने के लिए किया जाता है, जो संबंधित श्रोडिंगर समीकरण के स्थिर समाधान उत्पन्न करता है। Unruh प्रभाव, हॉकिंग विकिरण, परमाणु भौतिकी में युग्मन प्रभाव, और कई अन्य विषयों को समझने के लिए Bogoliubov परिवर्तन भी महत्वपूर्ण है।

बोगोलीबॉव परिवर्तन का उपयोग अक्सर हैमिल्टनियनों को विकर्ण करने के लिए किया जाता है, राज्य समारोह के इसी परिवर्तन के साथ। परिवर्तित राज्य समारोह पर विकर्ण हैमिल्टनियन के साथ गणना की गई ऑपरेटर आइगेनवेल्यूज़ इस प्रकार पहले की तरह ही हैं।

एकल बोसोनिक मोड उदाहरण

हार्मोनिक आधार पर बोसोनिक निर्माण और सर्वनाश ऑपरेटरों के लिए विहित कम्यूटेटर पर विचार करें

ऑपरेटरों की एक नई जोड़ी को परिभाषित करें

सम्मिश्र संख्या u और v के लिए, जहाँ बाद वाला पहले का हर्मिटियन संयुग्म है।

Bogoliubov परिवर्तन ऑपरेटरों को मैप करने वाला विहित परिवर्तन है और को और . स्थिरांक u और v पर स्थितियों को खोजने के लिए जैसे परिवर्तन विहित है, कम्यूटेटर का मूल्यांकन किया जाता है, अर्थात्,

तभी जाहिर होता है वह स्थिति है जिसके लिए परिवर्तन विहित है।

चूंकि इस स्थिति का रूप अतिशयोक्तिपूर्ण कार्य का सूचक है

स्थिरांक u और v के रूप में आसानी से parametrized किया जा सकता है

इसकी व्याख्या चरण स्थान के एक सहानुभूतिपूर्ण वेक्टर स्थान के रूप में की जाती है। सिम्प्लेक्टिक मैट्रिक्स से तुलना करके#विकर्णीकरण और अपघटन|बलोच-मसीहा अपघटन, दो कोण और ऑर्थोगोनल सिम्प्लेक्टिक ट्रांसफ़ॉर्मेशन (यानी, घुमाव) और निचोड़ ऑपरेटर के अनुरूप विकर्ण परिवर्तन से मेल खाता है।

अनुप्रयोग

अतिप्रवाहता के संदर्भ में सबसे प्रमुख आवेदन स्वयं निकोलाई बोगोलीबॉव द्वारा किया गया है।[3][4] अन्य अनुप्रयोगों में हैमिल्टनियन (क्वांटम यांत्रिकी) और प्रतिलौह चुंबकत्व के सिद्धांत में उत्तेजना शामिल हैं।[5] घुमावदार स्थान-समय में क्वांटम क्षेत्र सिद्धांत की गणना करते समय निर्वात की परिभाषा बदल जाती है, और इन विभिन्न वैकुआओं के बीच एक बोगोलीबॉव परिवर्तन संभव है। इसका उपयोग हॉकिंग विकिरण की व्युत्पत्ति में किया जाता है। क्वांटम ऑप्टिक्स में बोगोलीबॉव ट्रांसफॉर्म का भी व्यापक रूप से उपयोग किया जाता है, खासकर जब गॉसियन यूनिटरीज (जैसे बीम्सप्लिटर, चरण शिफ्टर्स और निचोड़ने के संचालन) के साथ काम करते हैं।

फर्मीओनिक मोड

कम्यूटेटर संबंधों के लिए

बोगोलीबॉव परिवर्तन द्वारा विवश है . इसलिए, केवल गैर-तुच्छ संभावना है पार्टिकल-एंटीपार्टिकल इंटरचेंज (या मल्टी-बॉडी सिस्टम में पार्टिकल-होल इंटरचेंज) के अनुरूप एक फेज शिफ्ट के संभावित समावेश के साथ। इस प्रकार, एक कण के लिए, रूपांतरण केवल (1) एक डिराक फर्मियन के लिए लागू किया जा सकता है, जहां कण और एंटीपार्टिकल अलग-अलग होते हैं (मेजराना फर्मियन या दाहिनी ओर के विपरीत), या (2) मल्टी-फ़र्मियोनिक सिस्टम के लिए, जिसमें एक से अधिक प्रकार के फर्मियन होते हैं।

अनुप्रयोग

सबसे प्रमुख अनुप्रयोग फिर से स्वयं निकोलाई बोगोलीबोव द्वारा किया गया है, इस बार अतिचालकता के बीसीएस सिद्धांत के लिए।[5][6][7][8] वह बिंदु जहां एक बोगोलीबॉव परिवर्तन करने की आवश्यकता स्पष्ट हो जाती है, वह यह है कि माध्य-क्षेत्र सन्निकटन में सिस्टम के हैमिल्टनियन को दोनों मामलों में मूल निर्माण और विनाश संचालकों में बिलिनियर शब्दों के योग के रूप में लिखा जा सकता है, जिसमें परिमित शामिल है शर्तों, यानी किसी को सामान्य हार्ट्री-फॉक पद्धति से परे जाना चाहिए। विशेष रूप से, मीन-फील्ड बोगोलीबॉव-डी गेनेस हैमिल्टनियन औपचारिकता में सुपरकंडक्टिंग जोड़ी शब्द जैसे कि , बोगोलीबॉव ने ऑपरेटरों को बदल दिया सर्वनाश करें और क्वासिपार्टिकल्स बनाएं (प्रत्येक अच्छी तरह से परिभाषित ऊर्जा, संवेग और स्पिन के साथ लेकिन इलेक्ट्रॉन और छेद अवस्था की एक क्वांटम सुपरपोजिशन में), और गुणांक हैं और Bogoliubov–de Gennes मैट्रिक्स के eigenvectors द्वारा दिया गया। परमाणु भौतिकी में भी, यह विधि लागू होती है, क्योंकि यह एक भारी तत्व में न्यूक्लियंस की युग्मन ऊर्जा का वर्णन कर सकती है।[9]


मल्टीमोड उदाहरण

विचाराधीन हिल्बर्ट अंतरिक्ष इन ऑपरेटरों से सुसज्जित है, और इसके बाद एक उच्च-आयामी क्वांटम हार्मोनिक ऑसिलेटर (आमतौर पर एक अनंत-आयामी एक) का वर्णन करता है।

संबंधित हैमिल्टनियन (क्वांटम यांत्रिकी) की जमीनी स्थिति सभी विलोपन संचालकों द्वारा सत्यानाश कर दी जाती है:

सभी उत्तेजित अवस्थाएँ कुछ सृजन संचालकों द्वारा उत्साहित जमीनी अवस्था के रैखिक संयोजन के रूप में प्राप्त की जाती हैं:

कोई एक रेखीय पुनर्परिभाषा द्वारा सृजन और विनाश ऑपरेटरों को फिर से परिभाषित कर सकता है:

जहां गुणांक विनाश ऑपरेटरों और निर्माण ऑपरेटरों की गारंटी देने के लिए कुछ नियमों को पूरा करना चाहिए , हर्मिटियन संयुग्म समीकरण द्वारा परिभाषित, समान कम्यूटेटर हैं बोसोन के लिए और एंटीकोमुटेटर फर्मिऑन के लिए।

उपरोक्त समीकरण ऑपरेटरों के बोगोलीबॉव परिवर्तन को परिभाषित करता है।

जमीनी राज्य ने सभी का सफाया कर दिया मूल जमीनी स्थिति से भिन्न है , और उन्हें ऑपरेटर-राज्य पत्राचार का उपयोग करके एक दूसरे के बोगोलीबॉव परिवर्तनों के रूप में देखा जा सकता है। उन्हें निचोड़ा हुआ सुसंगत राज्यों के रूप में भी परिभाषित किया जा सकता है। BCS वेव फंक्शन, फ़र्मियन्स की निचोड़ी हुई सुसंगत अवस्था का एक उदाहरण है।[10]


एकीकृत मैट्रिक्स विवरण

क्योंकि बोगोलीबॉव परिवर्तन ऑपरेटरों के रैखिक पुनर्संयोजन हैं, उन्हें मैट्रिक्स परिवर्तनों के संदर्भ में लिखना अधिक सुविधाजनक और व्यावहारिक है। अगर सर्वनाश करने वालों की जोड़ी के रूप में रूपांतरित करें

कहाँ एक है आव्यूह। फिर स्वाभाविक रूप से

फर्मियन ऑपरेटरों के लिए, रूपांतरण संबंधों की आवश्यकता मैट्रिक्स के रूप में दो आवश्यकताओं में परिलक्षित होती है

और

बोसोन ऑपरेटरों के लिए, रूपांतरण संबंधों की आवश्यकता होती है

और

इन शर्तों को समान रूप से लिखा जा सकता है

कहाँ

कहाँ क्रमशः फर्मियंस और बोसोन पर लागू होता है।

=== मैट्रिक्स विवरण === का उपयोग करके द्विघात हैमिल्टनियन का विकर्ण बनाना बोगोलीबॉव परिवर्तन हमें द्विघात हैमिल्टनियन को विकर्ण करने देता है

केवल मैट्रिक्स को विकर्ण करके . उपर्युक्त नोटेशन में, ऑपरेटर को अलग करना महत्वपूर्ण है और संख्यात्मक मैट्रिक्स . इस तथ्य को पुनर्लेखन द्वारा देखा जा सकता है जैसा

और अगर और केवल अगर विकर्ण करता है , अर्थात। .

बोगोलीबॉव रूपांतरणों के उपयोगी गुण नीचे सूचीबद्ध हैं।

Boson Fermion
Transformation matrix
Inverse transformation matrix
Gamma
Diagonalization


यह भी देखें

  • होल्स्टीन-प्रिमाकॉफ परिवर्तन
  • जॉर्डन-विग्नर परिवर्तन
  • जॉर्डन-श्विंगर परिवर्तन
  • छोटा परिवर्तन

संदर्भ

  1. Valatin, J. G. (March 1958). "अतिचालकता के सिद्धांत पर टिप्पणियाँ". Il Nuovo Cimento. 7 (6): 843–857. Bibcode:1958NCim....7..843V. doi:10.1007/bf02745589. S2CID 123486856.
  2. Bogoljubov, N. N. (March 1958). "अतिचालकता के सिद्धांत में एक नई पद्धति पर". Il Nuovo Cimento. 7 (6): 794–805. Bibcode:1958NCim....7..794B. doi:10.1007/bf02745585. S2CID 120718745.
  3. N. N. Bogoliubov: On the theory of superfluidity, J. Phys. (USSR), 11, p. 23 (1947), (Izv. Akad. Nauk Ser. Fiz. 11, p. 77 (1947)).
  4. Bogolubov [sic], N. "सुपरफ्लूडिटी के सिद्धांत पर" (PDF). Advances of Physical Sciences. Lebedev Physical Institute. Retrieved 27 April 2017.
  5. 5.0 5.1 See e.g. the textbook by Charles Kittel: Quantum theory of solids, New York, Wiley 1987.
  6. Boboliubov, N. N. (1 Jan 1958). "अतिचालकता के सिद्धांत में एक नई विधि। मैं". Soviet Physics (U.S.S.R.) JETP. 7 (1): 41–46.
  7. Bogoliubov, N. N. (July 1958). "सुपरकंडक्टिविटी III के सिद्धांत में एक नई विधि" (PDF). Soviet Physics (U.S.S.R.) JETP. 34 (7): 51–55.
  8. Bogolyubov, N. N.; Tolmachev, V. V.; Shirkov, D. V. (November 1958). "अतिचालकता के सिद्धांत में एक नई विधि". Fortschritte der Physik. 6 (11–12): 605–682. Bibcode:1958ForPh...6..605B. doi:10.1002/prop.19580061102.
  9. Strutinsky, V. M. (April 1967). "परमाणु द्रव्यमान और विरूपण ऊर्जा में शैल प्रभाव". Nuclear Physics A. 95 (2): 420–442. Bibcode:1967NuPhA..95..420S. doi:10.1016/0375-9474(67)90510-6.
  10. Svozil, K. (1990-12-24). "निचोड़ा हुआ फर्मियन राज्य". Physical Review Letters. American Physical Society (APS). 65 (26): 3341–3343. Bibcode:1990PhRvL..65.3341S. doi:10.1103/physrevlett.65.3341. ISSN 0031-9007. PMID 10042844.


अग्रिम पठन

The whole topic, and a lot of definite applications, are treated in the following textbooks:

  • Blaizot, J.-P.; Ripka, G. (1985). Quantum Theory of Finite Systems. MIT Press. ISBN 0-262-02214-1.
  • Fetter, A.; Walecka, J. (2003). Quantum Theory of Many-Particle Systems. Dover. ISBN 0-486-42827-3.
  • Kittel, Ch. (1987). Quantum theory of solids. Wiley. ISBN 0-471-62412-8.
  • Wagner, M. (1986). Unitary Transformations in Solid State Physics. Elsevier Science. ISBN 0-444-86975-1.