कम्प्यूटेशनल आँकड़े

From Vigyanwiki
Revision as of 08:43, 16 June 2023 by alpha>Indicwiki (Created page with "{{for|the journal|Computational Statistics (journal)}} {{Short description|Interface between statistics and computer science}} File:London School of Economics Statistics Mac...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
1964 में लंदन स्कूल ऑफ इकोनॉमिक्स की सांख्यिकी कंप्यूटर लैब में काम करने वाले छात्र

कम्प्यूटेशनल सांख्यिकी, या सांख्यिकीय कंप्यूटिंग, सांख्यिकी और कंप्यूटर विज्ञान के बीच का बंधन है। इसका अर्थ है सांख्यिकीय विधियाँ जो कम्प्यूटेशनल विधियों का उपयोग करके सक्षम हैं। यह सांख्यिकी के गणितीय विज्ञान के लिए विशिष्ट कम्प्यूटेशनल विज्ञान (या वैज्ञानिक कंप्यूटिंग) का क्षेत्र है। यह क्षेत्र भी तेजी से विकसित हो रहा है, जिसके कारण मांग की जा रही है कि कंप्यूटिंग की एक व्यापक अवधारणा को सामान्य सांख्यिकीय शिक्षा के हिस्से के रूप में पढ़ाया जाना चाहिए।[1]

जैसा कि सांख्यिकी में लक्ष्य कच्चे डेटा को ज्ञान में बदलना है,[2] लेकिन कंप्यूटर गहन सांख्यिकीय विधियों पर ध्यान केंद्रित किया जाता है, जैसे कि बहुत बड़े नमूना आकार निर्धारण और गैर-सजातीय डेटा सेट वाले मामले।[2]

शब्द 'कम्प्यूटेशनल स्टैटिस्टिक्स' और 'स्टैटिस्टिकल कंप्यूटिंग' का प्रयोग अक्सर एक दूसरे के स्थान पर किया जाता है, हालांकि कार्लो लॉरो (सांख्यिकीय कंप्यूटिंग के लिए इंटरनेशनल एसोसिएशन के एक पूर्व अध्यक्ष) ने सांख्यिकी के लिए कंप्यूटर विज्ञान के अनुप्रयोग के रूप में 'सांख्यिकीय कंप्यूटिंग' को परिभाषित करते हुए एक अंतर बनाने का प्रस्ताव दिया था। और 'कम्प्यूटेशनल सांख्यिकी' को लागू करने के लिए एल्गोरिथम के डिजाइन के लक्ष्य के रूप में कंप्यूटर पर सांख्यिकीय तरीके, कंप्यूटर से पहले अकल्पनीय सहित उम्र (जैसे बूटस्ट्रैपिंग (सांख्यिकी), मोंटे कार्लो सिमुलेशन), साथ ही साथ विश्लेषणात्मक रूप से जटिल समस्याओं से निपटने के लिए [[[sic]]]।[3] शब्द 'कम्प्यूटेशनल स्टैटिस्टिक्स' का उपयोग कम्प्यूटेशनल रूप से गहन सांख्यिकीय विधियों को संदर्भित करने के लिए भी किया जा सकता है, जिसमें रीसैंपलिंग (सांख्यिकी) विधियाँ, मार्कोव चेन मोंटे कार्लो विधियाँ, स्थानीय प्रतिगमन, कर्नेल घनत्व अनुमान, कृत्रिम तंत्रिका नेटवर्क और सामान्यीकृत योगात्मक मॉडल शामिल हैं।

इतिहास

हालांकि कम्प्यूटेशनल सांख्यिकी का आज व्यापक रूप से उपयोग किया जाता है, वास्तव में इसका सांख्यिकी समुदाय में स्वीकृति का अपेक्षाकृत छोटा इतिहास है। अधिकांश भाग के लिए, सांख्यिकी के क्षेत्र के संस्थापक कम्प्यूटेशनल सांख्यिकीय पद्धति के विकास में गणित और स्पर्शोन्मुख सन्निकटन पर निर्भर थे।[4] सांख्यिकीय क्षेत्र में, "कंप्यूटर" शब्द का पहला प्रयोग 1891 में रॉबर्ट पर्सिवल पोर्टर | रॉबर्ट पी. पोर्टर द्वारा अमेरिकन स्टैटिस्टिकल एसोसिएशन के जर्नल में एक लेख में आया है। लेख में हरमन होलेरिथ की मशीन के उपयोग के बारे में चर्चा की गई है। संयुक्त राज्य अमेरिका की 11 वीं जनगणना।[citation needed] हरमन होलेरिथ की मशीन, जिसे टेबुलेटिंग मशीन भी कहा जाता है, एक विद्युत मशीन थी जिसे छिद्रित कार्ड में संग्रहीत जानकारी को सारांशित करने में सहायता के लिए डिज़ाइन किया गया था। इसका आविष्कार हरमन होलेरिथ (29 फरवरी, 1860 - 17 नवंबर, 1929), एक अमेरिकी व्यवसायी, आविष्कारक और सांख्यिकीविद ने किया था। पंच कार्ड टेबुलेटिंग मशीन का उनका आविष्कार 1884 में पेटेंट कराया गया था, और बाद में संयुक्त राज्य अमेरिका की 1890 की जनगणना में इसका इस्तेमाल किया गया था। प्रौद्योगिकी के लाभ तुरंत स्पष्ट थे। 1880 की जनगणना, जिसमें लगभग 50 मिलियन लोग थे, और इसे सारणीबद्ध करने में 7 वर्ष से अधिक का समय लगा। जबकि 1890 की जनगणना में, 62 मिलियन से अधिक लोगों के साथ, इसमें एक वर्ष से भी कम समय लगा। यह मशीनीकृत कम्प्यूटेशनल सांख्यिकी और अर्ध-स्वचालित डाटा प्रासेसिंग सिस्टम के युग की शुरुआत को चिह्नित करता है।

1908 में, विलियम सीली गॉसेट ने अपनी अब तक की प्रसिद्ध मोंटे कार्लो पद्धति का प्रदर्शन किया, जिसके कारण छात्र के टी-वितरण की खोज हुई। छात्र का टी-वितरण।[5] कम्प्यूटेशनल विधियों की मदद से, उनके पास संबंधित सैद्धांतिक वितरणों पर आच्छादित अनुभवजन्य वितरणों के प्लॉट भी हैं। कंप्यूटर ने सिमुलेशन में क्रांति ला दी है और गोसेट के प्रयोग की प्रतिकृति को एक अभ्यास से थोड़ा अधिक बना दिया है।[6][7] बाद में, वैज्ञानिकों ने छद्म-यादृच्छिक विचलन उत्पन्न करने के कम्प्यूटेशनल तरीकों को आगे बढ़ाया। छद्म-यादृच्छिक विचलन, उलटा संचयी वितरण समारोह या स्वीकृति-अस्वीकृति विधियों का उपयोग करके समान विचलन को अन्य वितरण रूपों में परिवर्तित करने के तरीकों का प्रदर्शन किया, और मार्कोव श्रृंखला मोंटे कार्लो के लिए विकसित राज्य-अंतरिक्ष पद्धति .[8] पूरी तरह से स्वचालित तरीके से यादृच्छिक अंक उत्पन्न करने के पहले प्रयासों में से एक, रैंड कॉर्पोरेशन द्वारा 1947 में किया गया था। उत्पादित यादृच्छिक संख्या पुस्तक को 100,000 सामान्य विचलन के साथ ए मिलियन रैंडम अंकों के रूप में और पंच कार्ड की एक श्रृंखला के रूप में भी प्रकाशित किया गया था। .

1950 के दशक के मध्य तक, हार्डवेयर यादृच्छिक संख्या जनरेटर के लिए उपकरणों के लिए कई लेख और पेटेंट प्रस्तावित किए गए थे।[9] इन उपकरणों का विकास सांख्यिकीय विश्लेषण में सिमुलेशन और अन्य मूलभूत घटकों को करने के लिए यादृच्छिकता का उपयोग करने की आवश्यकता से प्रेरित था। इस तरह के उपकरणों में सबसे प्रसिद्ध में से एक ERNIE है, जो यादृच्छिक संख्या उत्पन्न करता है जो प्रीमियम बांड के विजेताओं को निर्धारित करता है, यूनाइटेड किंगडम में जारी एक लॉटरी बांड। 1958 में, जॉन टुकी की कटहल विकसित की गई थी। यह गैर-मानक स्थितियों के तहत नमूनों में पैरामीटर अनुमानों के पूर्वाग्रह को कम करने की एक विधि के रूप में है।[10] इसके लिए व्यावहारिक कार्यान्वयन के लिए कंप्यूटर की आवश्यकता होती है। अब तक, कंप्यूटर ने कई थकाऊ सांख्यिकीय अध्ययनों को संभव बनाया है।[11]


तरीके

अधिकतम संभावना अनुमान

अधिकतम संभावना अनुमान का उपयोग अनुमानित संभावना वितरण के सांख्यिकीय पैरामीटर अनुमान सिद्धांत के लिए किया जाता है, कुछ देखे गए डेटा दिए गए हैं। यह गणितीय अनुकूलन द्वारा एक संभावना कार्य द्वारा प्राप्त किया जाता है ताकि ग्रहण किए गए सांख्यिकीय मॉडल के तहत प्राप्ति (संभाव्यता) सबसे अधिक संभावित हो।

मोंटे कार्लो विधि

मोंटे कार्लो एक सांख्यिकीय पद्धति संख्यात्मक परिणाम प्राप्त करने के लिए बार-बार यादृच्छिक नमूने पर निर्भर करती है। अवधारणा उन समस्याओं को हल करने के लिए यादृच्छिकता का उपयोग करना है जो सिद्धांत रूप में निर्धारक प्रणाली हो सकती हैं। वे अक्सर भौतिकी और गणित की समस्याओं में उपयोग किए जाते हैं और सबसे उपयोगी होते हैं जब अन्य तरीकों का उपयोग करना मुश्किल होता है। मोंटे कार्लो विधियों का मुख्य रूप से तीन समस्या वर्गों में उपयोग किया जाता है: अनुकूलन, संख्यात्मक एकीकरण, और संभाव्यता वितरण से ड्रॉ बनाना।

मार्कोव चेन मोंटे कार्लो

मार्कोव श्रृंखला मोंटे कार्लो विधि एक निरंतर यादृच्छिक चर से नमूने बनाती है, जिसमें प्रायिकता घनत्व एक ज्ञात फ़ंक्शन के समानुपाती होता है। इन नमूनों का उपयोग उस चर पर एक अभिन्न का मूल्यांकन करने के लिए किया जा सकता है, जैसा कि इसके अपेक्षित मूल्य या विचरण के रूप में होता है। जितने अधिक चरण शामिल हैं, नमूने का वितरण उतना ही अधिक निकटता से वास्तविक वांछित वितरण से मेल खाता है।

अनुप्रयोग

कम्प्यूटेशनल सांख्यिकी जर्नल

द स्टाटा जर्नल

एसोसिएशन

  • सांख्यिकीय कंप्यूटिंग के लिए अंतर्राष्ट्रीय संघ

यह भी देखें

संदर्भ

  1. Nolan, D. & Temple Lang, D. (2010). "Computing in the Statistics Curricula", The American Statistician 64 (2), pp.97-107.
  2. 2.0 2.1 Wegman, Edward J. “Computational Statistics: A New Agenda for Statistical Theory and Practice.Journal of the Washington Academy of Sciences, vol. 78, no. 4, 1988, pp. 310–322. JSTOR
  3. Lauro, Carlo (1996), "Computational statistics or statistical computing, is that the question?", Computational Statistics & Data Analysis, 23 (1): 191–193, doi:10.1016/0167-9473(96)88920-1
  4. Watnik, Mitchell (2011). "प्रारंभिक कम्प्यूटेशनल सांख्यिकी". Journal of Computational and Graphical Statistics (in English). 20 (4): 811–817. doi:10.1198/jcgs.2011.204b. ISSN 1061-8600. S2CID 120111510.
  5. "Student" [William Sealy Gosset] (1908). "माध्य की संभावित त्रुटि" (PDF). Biometrika. 6 (1): 1–25. doi:10.1093/biomet/6.1.1. hdl:10338.dmlcz/143545. JSTOR 2331554.
  6. Trahan, Travis John (2019-10-03). "लॉस एलामोस नेशनल लेबोरेटरी में मोंटे कार्लो मेथड्स में हालिया एडवांस". doi:10.2172/1569710. OSTI 1569710. {{cite journal}}: Cite journal requires |journal= (help)
  7. Metropolis, Nicholas; Ulam, S. (1949). "मोंटे कार्लो विधि". Journal of the American Statistical Association. 44 (247): 335–341. doi:10.1080/01621459.1949.10483310. ISSN 0162-1459. PMID 18139350.
  8. Robert, Christian; Casella, George (2011-02-01). "A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data". Statistical Science. 26 (1). doi:10.1214/10-sts351. ISSN 0883-4237. S2CID 2806098.
  9. Pierre L'Ecuyer (2017). "समान यादृच्छिक संख्या पीढ़ी का इतिहास" (PDF). 2017 Winter Simulation Conference (WSC): 202–230. doi:10.1109/WSC.2017.8247790. ISBN 978-1-5386-3428-8. S2CID 4567651.
  10. QUENOUILLE, M. H. (1956). "अनुमान में पूर्वाग्रह पर नोट्स". Biometrika. 43 (3–4): 353–360. doi:10.1093/biomet/43.3-4.353. ISSN 0006-3444.
  11. Teichroew, Daniel (1965). "कंप्यूटर के युग से पहले वितरण नमूनाकरण का इतिहास और सिमुलेशन के लिए इसकी प्रासंगिकता". Journal of the American Statistical Association. 60 (309): 27–49. doi:10.1080/01621459.1965.10480773. ISSN 0162-1459.


अग्रिम पठन

लेख

पुस्तकें

बाहरी संबंध

एसोसिएशन

पत्रिकाओं