सार्वभौमिक सामान्यीकरण

From Vigyanwiki
Revision as of 18:45, 30 June 2023 by alpha>Indicwiki (Created page with "{{more footnotes|date=March 2023}} {{Infobox mathematical statement | name = Universal generalization | type = Rule of inference | field = Predicate logic | statement...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Universal generalization
TypeRule of inference
FieldPredicate logic
StatementSuppose is true of any arbitrarily selected , then is true of everything.
Symbolic statement,

विधेय तर्क में, सामान्यीकरण (सार्वभौमिक सामान्यीकरण या सार्वभौमिक परिचय भी,[1][2][3] GEN) अनुमान का एक वैधता (तर्क) नियम है। इसमें कहा गया है कि यदि तब व्युत्पन्न किया गया है प्राप्त किया जा सकता है।

परिकल्पनाओं के साथ सामान्यीकरण

पूर्ण सामान्यीकरण नियम घूमने वाला दरवाज़ा (प्रतीक)प्रतीक) के बाईं ओर परिकल्पना की अनुमति देता है, लेकिन प्रतिबंधों के साथ। मान लीजिए सूत्रों का एक सेट है, एक सूत्र, और निकाला गया है. सामान्यीकरण नियम यह बताता है यदि प्राप्त किया जा सकता है में उल्लेख नहीं है और में नहीं होता है .

सुदृढ़ता के लिए ये प्रतिबंध आवश्यक हैं। पहले प्रतिबंध के बिना, कोई निष्कर्ष निकाल सकता है परिकल्पना से . दूसरे प्रतिबंध के बिना, कोई निम्नलिखित कटौती कर सकता है:

  1. (परिकल्पना)
  2. (अस्तित्वगत तात्कालिकता)
  3. (अस्तित्वगत तात्कालिकता)
  4. (दोषपूर्ण सार्वभौमिक सामान्यीकरण)

इसका तात्पर्य यह दर्शाना है जो एक अनुचित कटौती है. ध्यान दें कि यदि अनुमति है में उल्लेख नहीं है (दूसरे प्रतिबंध को शब्दार्थ संरचना के रूप में लागू करने की आवश्यकता नहीं है किसी भी चर के प्रतिस्थापन द्वारा नहीं बदला जा रहा है)।

प्रमाण का उदाहरण

सिद्ध करना: से व्युत्पन्न है और .

सबूत:

Step Formula Justification
1 Hypothesis
2 Hypothesis
3 Universal instantiation
4 From (1) and (3) by Modus ponens
5 Universal instantiation
6 From (2) and (5) by Modus ponens
7 From (6) and (4) by Modus ponens
8 From (7) by Generalization
9 Summary of (1) through (8)
10 From (9) by Deduction theorem
11 From (10) by Deduction theorem

इस प्रमाण में, सार्वभौमिक सामान्यीकरण का उपयोग चरण 8 में किया गया था। कटौती प्रमेय चरण 10 और 11 में लागू था क्योंकि स्थानांतरित किए जा रहे सूत्रों में कोई मुक्त चर नहीं है।

यह भी देखें

संदर्भ

  1. Copi and Cohen
  2. Hurley
  3. Moore and Parker