Universal generalizationType | Rule of inference |
---|
Field | Predicate logic |
---|
Statement | Suppose is true of any arbitrarily selected , then is true of everything. |
---|
Symbolic statement | , |
---|
विधेय तर्क में सार्वभौमिक सामान्यीकरण या सार्वभौमिक परिचय भी,[1][2][3] अनुमानतः इसकी वैधता (तर्क) नियम को प्रदर्शित करता है। इसमें यह कहा गया है कि यदि तब व्युत्पन्न किया गया है प्राप्त किया जा सकता है।
परिकल्पनाओं के साथ सामान्यीकरण
पूर्ण सामान्यीकरण नियम के अनुसार घूमने वाला प्रतीकों के बाईं ओर परिकल्पना की अनुमति देता है, अपितु प्रतिबंधों के साथ इसका निवारण किया जा सकता हैं। इस प्रकार मान लीजिए सूत्रों का समुच्चय है, जहाँ सूत्र, और निकाला गया है, इसके आधार पर सामान्यीकरण नियम यह बताता है कि द्वारा इसे प्राप्त किया जा सकता है, यहाँ पर में का मान उल्लेख नहीं है, और में का मान नहीं होता है।
सुदृढ़ता के लिए ये प्रतिबंध आवश्यक हैं। पहले प्रतिबंध के बिना, कोई निष्कर्ष निकाल सकता है परिकल्पना से को दूसरे प्रतिबंध के बिना, कोई निम्नलिखित कटौती कर सकता है:
- (परिकल्पना)
- (अस्तित्वगत तात्कालिकता)
- (अस्तित्वगत तात्कालिकता)
- (दोषपूर्ण सार्वभौमिक सामान्यीकरण)
इसका तात्पर्य यह दर्शाना है लिए आवश्यक हैं कि जो अनुचित कटौती है, इस पर ध्यान दें कि यदि अनुमति है में उल्लेख नहीं है, तो इस स्थिति में दूसरे प्रतिबंध को शब्दार्थ संरचना के रूप में लागू करने की आवश्यकता नहीं है, इसके आधार पर किसी भी चर के प्रतिस्थापन द्वारा परिवर्तित नहीं होता हैं।
प्रमाण का उदाहरण
सिद्ध करना: से और मान व्युत्पन्न होता है।
प्रमाण:
चरण
|
सूत्र
|
कारण
|
1
|
|
परिकल्पना
|
2
|
|
परिकल्पना
|
3
|
|
सार्वभौमिक तात्कालिकता
|
4
|
|
मोडस पोनेन्स द्वारा (1) और (3) से
|
5
|
|
सार्वभौमिक तात्कालिकता
|
6
|
|
मोडस पोनेन्स द्वारा (2) और (5) से
|
7
|
|
मोडस पोनेन्स द्वारा (6) और (4) से
|
8
|
|
सामान्यीकरण द्वारा (7) से
|
9
|
|
(1) से (8) तक का सारांश
|
10
|
|
कटौती प्रमेय द्वारा (9) से
|
11
|
|
कटौती प्रमेय द्वारा (10) से
|
इस प्रमाण में, सार्वभौमिक सामान्यीकरण का उपयोग चरण 8 में किया गया था। इस प्रकार कटौती प्रमेय के लिए प्राप्त होने वाले इन चरणों को 10 और 11 में लागू किया गया था, क्योंकि स्थानांतरित किए जा रहे सूत्रों में कोई मुक्त चर नहीं है।
यह भी देखें
संदर्भ
- ↑ Copi and Cohen
- ↑ Hurley
- ↑ Moore and Parker