पूर्णांक-अवकल समीकरण
अंतर समीकरण |
---|
दायरा |
वर्गीकरण |
समाधान |
लोग |
गणित में, पूर्णांक-विभेदक समीकरण एक समीकरण है जिसमें किसी फ़ंक्शन (गणित) के अभिन्न और व्युत्पन्न दोनों शामिल होते हैं।
सामान्य प्रथम कोटि रैखिक समीकरण
सामान्य प्रथम-क्रम, रैखिक (केवल व्युत्पन्न से जुड़े पद के संबंध में) पूर्णांक-विभेदक समीकरण इस प्रकार है
जैसा कि विभेदक समीकरणों के साथ विशिष्ट है, एक बंद-फ़ॉर्म समाधान प्राप्त करना अक्सर मुश्किल हो सकता है। अपेक्षाकृत कुछ मामलों में जहां समाधान पाया जा सकता है, यह अक्सर किसी प्रकार के अभिन्न परिवर्तन के माध्यम से होता है, जहां समस्या को पहले बीजगणितीय सेटिंग में बदल दिया जाता है। ऐसी स्थितियों में, इस बीजगणितीय समीकरण के समाधान में व्युत्क्रम परिवर्तन लागू करके समस्या का समाधान निकाला जा सकता है।
उदाहरण
निम्नलिखित दूसरे क्रम की समस्या पर विचार करें,
कहाँ
हेविसाइड स्टेप फ़ंक्शन है। लाप्लास परिवर्तन द्वारा परिभाषित किया गया है,
पद-दर-अवधि लाप्लास परिवर्तन लेने पर, और व्युत्पन्न और अभिन्न के लिए नियमों का उपयोग करने पर, पूर्णांक-अंतर समीकरण निम्नलिखित बीजगणितीय समीकरण में परिवर्तित हो जाता है,
इस प्रकार,
- .
समोच्च एकीकरण के तरीकों का उपयोग करके लाप्लास परिवर्तन को उलटना तब प्राप्त होता है
- .
वैकल्पिक रूप से, कोई व्यक्ति वर्ग को पूरा कर सकता है और लाप्लास ट्रांसफॉर्म की सूची की एक तालिका का उपयोग कर सकता है#टेबल (तेजी से क्षयकारी साइन तरंग) या आगे बढ़ने के लिए मेमोरी से रिकॉल करें:
- .
अनुप्रयोग
इंटीग्रो-डिफरेंशियल समीकरण विज्ञान और अभियांत्रिकी से कई स्थितियों को मॉडल करते हैं, जैसे सर्किट विश्लेषण में। किरचॉफ के सर्किट नियमों के अनुसार|किरचॉफ का दूसरा नियम, एक बंद लूप में शुद्ध वोल्टेज ड्रॉप प्रभावित वोल्टेज के बराबर होता है . (यह अनिवार्य रूप से ऊर्जा के संरक्षण का एक अनुप्रयोग है।) इसलिए एक आरएलसी सर्किट इसका पालन करता है
व्हिथम समीकरण का उपयोग द्रव गतिकी में अरेखीय फैलावदार तरंगों को मॉडल करने के लिए किया जाता है।[2]
महामारी विज्ञान
इंटीग्रो-डिफरेंशियल समीकरणों ने महामारी विज्ञान, महामारी के गणितीय मॉडलिंग में आवेदन पाया है, खासकर जब मॉडल में जनसंख्या पिरामिड | आयु-संरचना शामिल होती है[3] या स्थानिक महामारी का वर्णन करें।[4] केर्मैक-मैककेंड्रिक सिद्धांत|संक्रामक रोग संचरण का केर्मैक-मैककेंड्रिक सिद्धांत एक विशेष उदाहरण है जहां जनसंख्या में आयु-संरचना को मॉडलिंग ढांचे में शामिल किया गया है।
यह भी देखें
- विलंब अंतर समीकरण
- अंतर समीकरण
- अभिन्न समीकरण
- इंटीग्रोडिफ़रेंस समीकरण
संदर्भ
- ↑ Zill, Dennis G., and Warren S. Wright. “Section 7.4: Operational Properties II.” Differential Equations with Boundary-Value Problems, 8th ed., Brooks/Cole Cengage Learning, 2013, p. 305. ISBN 978-1-111-82706-9. Chapter 7 concerns the Laplace transform.
- ↑ Whitham, G.B. (1974). रैखिक और अरेखीय तरंगें. New York: Wiley.
- ↑ Brauer, Fred; van den Driessche, Pauline; Wu, Jianhong, eds. (2008). गणितीय महामारी विज्ञान. Lecture Notes in Mathematics. Vol. 1945. pp. 205–227. doi:10.1007/978-3-540-78911-6. ISBN 978-3-540-78910-9. ISSN 0075-8434.
- ↑ Medlock, Jan (March 16, 2005). "संक्रामक रोग के लिए इंटीग्रो-डिफरेंशियल-समीकरण मॉडल" (PDF). Yale University. Archived from the original (PDF) on 2020-03-21.
अग्रिम पठन
- Vangipuram Lakshmikantham, M. Rama Mohana Rao, “Theory of Integro-Differential Equations”, CRC Press, 1995
बाहरी संबंध
- Interactive Mathematics
- Numerical solution of the example using Chebfun